Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  SiMo
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In recent years, the research of nodular cast iron has been focused on increasing fatigue resistence. In the paper, two types of alloyed nodular cast irons have been investigated – SiMo-nodular cast iron alloyed by 4% of silicon and 1% of molybdenum and SiCu-nodular cast iron alloyed by 4% of silicon and 1.5% of copper. SiMo-nodular cast iron is suitable for high-temperature applications, for example the exhaust manifolds of the combustion engines. SiCu-nodular cast iron is used in various components of tribotechnical units. These components are often loaded by fatigue. The mechanical and fatigue behaviour of both nodular cast iron types has been studied by means of tensile test, impact bending test, hardness test and fatigue tests. Fatigue tests were realised at low frequency cyclic push-pull loading up to 10 million cycles. The relationship between the amplitude of stress and number of cycles to failure was investigated and the fatigue strength was determined. Mechanical and fatigue properties of both nodular cast iron types are correlated with the microstructure of specimens.
2
EN
The article presents results of studies of silicon – molybdenum cast iron (4.42% Si, 2.59% Mo and 2.48% C wt.-%) crystallization process. Metallographic analysis was carried out using SEM-scanning electron microscopy with the EDS system. In order to determine the phase composition, X-ray diffraction studies were performed. Thermo-Calc, a computer simulation program, was used to simulate the crystallization process. . The obtained data allowed to describe the effect of some elements on the crystallization process. The silicon phase of MnSi could not be identified during metallographic studies. Also, computer simulation of the crystallization process did not answer the question at which point the silicon phase of MnSi crystallizes in the tested alloy. Therefore, not all results obtained were linked to the registered crystallization process (TDA process). The EDS analysis revealed an unusual distribution of molybdenum in the microstructure of the sample, where it is clearly visible that the area enriched with this element is also the separation of spheroidal graphite. The possibility of occurrence of Mo-rich micro-areas found in graphite is considered. The case is debatable and difficult to resolve at this stage. Perhaps, at such a high concentration of molybdenum (2.59% Mo) in the alloy, conditions are created for simultaneously crystallization of graphite and molybdenum phases.
3
Content available SiMo Ductile Iron Crystallization Process
EN
The article presents crystallization process of silicon molybdenum ductile cast iron (SiMo). The alloy with 5% silicon content and with variable amounts of Mo in a range of 0-1% was chosen for the research. The carbon content in the analysed alloys did not exceed 3,1%. The studies of crystallization process were based on thermal – derivative analysis (TDA). Chemical composition of all examined samples was analysed with the use of LECO spectrometer. Additionally, the carbon and the sulphur content was determined basing on carbon and sulphur LECO analyser. For metallographic examination the scanning electron microscopy (SEM) with EDS analyser was used. Disclosed phases have been also tested with the use of X-ray diffraction. The results allowed the description of crystallization processes of silicon molybdenum ductile cast iron using thermal – derivative analysis (TDA). Conducted studies did not allow for the clear identification of all complex phases containing molybdenum, occurring at the grain boundaries. Therefore, the further stages of the research could include the use of a transmission electron microscope to specify the description of complex compounds present in the alloy.
4
Content available Physicochemical Properties of Silicon Cast Iron
EN
The article presents results of pitting corrosion studies of selected silicon cast irons. The range of studies included low, medium and high silicon cast iron. The amount of alloying addition (Si) in examined cast irons was between 5 to 25 %. Experimental melts of silicon cast irons [1-3] were conducted in Department of Foundry of Silesian University of Technology in Gliwice and pitting corrosion resistance tests were performed in Faculty of Biomedical Engineering in Department of Biomaterials and Medical Devices Engineering of Silesian University of Technology in Zabrze. In tests of corrosion resistance the potentiostat VoltaLab PGP201 was used. Results obtained in those research complement the knowledge about the corrosion resistance of iron alloys with carbon containing Si alloying addition above 17 % [4-6]. Obtained results were supplemented with metallographic examinations using scanning electron microscopy. The analysis of chemical composition for cast irons using Leco spectrometer was done and the content of alloying element (silicon) was also determined using the gravimetric method in the laboratory of the Institute of Welding in Gliwice. The compounds of microstructure was identify by X-ray diffraction.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.