Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Ship's Trajectory
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper introduces a new approach to solving multi-ship encounter situations by combining some of the assumptions of game theory with evolutionary programming techniques. A multi-ship encounter is here modelled as a game played by “thinking players” – the ships of different and possibly changing strate-gies. The solution – an optimal set of cooperating (non-colliding) trajectories is then found by means of evo-lutionary algorithms. The paper contains the description of the problem formulation as well as the details of the evolutionary program. The method can be used for both open waters and restricted water regions.
EN
The paper discusses the advantages of a new approach to solving ship encounter situations by combining some of the assumptions of game theory with evolutionary programming techniques. A multi-ship encounter is here modeled as a game played by “thinking players” – the ships of different and possibly chang-ing strategies. The solution – an optimal set of cooperating (non-colliding) trajectories is then found by means of evolutionary algorithms. The paper contains the results obtained for different cases of situations including open waters and restricted water regions and the discussion of these results. The already developed version of the method is fast enough to be applied in the real time on-board collision avoidance systems or VTS systems.
EN
Flexible strategies for collision avoidance, presented at TransNav 2007, were examined using computer program for its correctness in different situations of ships interaction. It was determined, that on short distance the risk of collision can arise again when the vessel returning to the planned route after deviation from collision. For controlling ship’s safe returning, the mathematical model was developed. This model describes the analytical dependence of the rate of changing relative course with respect to rates of turning of the vessels and its initial relative position. This method can be used in automatic systems for controlling the safe returning of the vessel to the planned route.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.