Seymour’s second neighborhood conjecture states that every simple digraph without loops or 2-cycles contains a vertex whose second neighborhood is at least as large as its first. In this paper we show, that from falsity of Seymour’s second neighborhood conjecture it follows that there exist strongly-connected counterexamples with both low and high density (dense and sparse graph). Moreover, we show that if there is a counterexample to conjecture, then it is possible to construct counterexample with any diameter k ≥ 3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.