We give some properties of Schramm functions; among others, we prove that the family of all continuous piecewise linear functions defined on a real interval I is contained in the space ΦBV (I) of functions of bounded variation in the sense of Schramm. Moreover, we show that the generating function of the corresponding Nemytskij composition operator acting between Banach spaces CΦBV (I) of continuous functions of bounded Schramm variation has to be continuous and additionally we show that a space CΦBV (I) has the Matkowski property.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.