Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Sankey diagram
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Skrócenie dróg transportowych jest jednym z obszarów doskonalenia procesu produkcyjnego wpływającego na jego efektywność. Jedną z metod pozwalających wyznaczyć rozmieszczenie stanowisk pracy, przy minimalizacji długość dróg transportowych, jest metoda trójkątów. W procesie produkcyjnym, w którym są wytwarzane różnorodne produkty w oparciu o podobną technologię, istnieje konieczność takiego rozmieszczenia stanowisk pracy oraz przestrzeni magazynowej, aby przepływ produkcji przebiegał sprawnie, redukując czas, a co za tym idzie — koszty transportu. Zastosowanie metody trójkątów wymaga przeprowadzenia takich działań jak: pozyskanie i przygotowanie danych dotyczących częstotliwości powiązań transportowych między stanowiskami, opracowanie rozmieszczenia teoretycznego stanowisk, opracowanie oraz wdrożenie modelu przestrzenne- go, w którym są uwzględniane wymiary hali, gabaryty stanowisk, drogi transportowe, pola odkładcze i inne elementy wyposażenia, takie jak np. regały, stojaki.
EN
Production process layout improvement can influence it's efficiency. Triangle method support production process layout planning and minimalizing length of transportation path. In assembly process of customized product is necessary minimalizing transportation time and cost. Application of triangle method required: data preparing related to components layout, theoretical and practical placement of stands.
EN
Within the article an issues of implementing the new kinds of marine diesel fuels into ships’ operation was described taking into account restrictions on the permissible sulphur content introduced by the International Maritime Organization. This is a new situation for ship owners and fuel producers, which forces the necessity to carry out laboratory research tests on especially adapted engine stands. How to elaborate the method enabling quality assessment of the self-ignition engine performance, considered in three categories: energy, emission and reliability, represents the key issue of the organization of such research. In the field of energy research, it is necessary to know the thermal efficiency of the engine as the basic comparative parameter applied in diagnostic analyzes and syntheses of sequentially tested marine diesel fuels. This type of scientific research has been worked out for two years in the Department of Marine and Land Power Plants of the Gdańsk University of Technology, as a part of the statutory activities conducted in cooperation with the Regional Fund for Environmental Protection in Gdansk and the LOTOS Group oil company. This article presents the algorithm and results of thermal efficiency calculations of the Farymann Diesel D10 test engine in the conditions of feeding with various low-sulfur marine diesel fuels: distillation and residual fuels. This parameters stands for one of ten diagnostic measures of the ranking of energy and emission quality of newly manufactured marine diesel fuels being built at the Department.
3
Content available On power stream in motor or drive system
EN
In a motor or a drive system the quantity of power increases in the direction opposite to the direction of power flow. Energy losses and energy efficiency of a motor or drive system must be presented as functions of physical quantities independent of losses. Such quantities are speed and load. But the picture of power stream in a motor or drive system is presented in the literature in the form of traditional Sankey diagram of power decrease in the direction of power flow. The paper refers to Matthew H. Sankey’s diagram in his paper „The Thermal Efficiency of Steam Engines” of 1898. Presented is also a diagram of power increase in the direction opposite to the direction of power flow. The diagram, replacing the Sankey’s diagram, opens a new prospect for research into power of energy losses and efficiency of motors and drive systems.
4
PL
W silniku lub w układzie napędowym wielkość strumienia mocy rośnie w kierunku przeciwnym do kierunku przepływu mocy. Straty energetyczne i sprawność energetyczna silnika lub układu napędowego powinny być przedstawiane jako funkcje wielkości fizycznych niezależnych od strat. Takimi wielkościami są prędkość i obciążenie silnika. Jednakże obraz strumienia mocy w silniku lub w układzie napędowym jest przedstawiany w literaturze w formie tradycyjnego wykresu Sankeya spadku mocy zgodnego z kierunkiem przepływu mocy. Artykuł nawiązuje do wykresu Matthew H. Sankeya zamieszczonego w jego referacie The Thermal Efficiency of Steam Engines z roku 1898. Przedstawiony jest także wykres wzrostu mocy w kierunku przeciwnym do kierunku przepływu mocy. Wykres ten, zastępujący wykres Sankeya, otwiera nową perspektywę badań mocy strat energetycznych i sprawności energetycznej silników i układów napędowych.
EN
In a motor or in a drive system the quantity of power increases in the direction opposite to the direction of power flow. Energy losses and energy efficiency of a motor or a drive system must be presented as functions of physical quantities independent of losses. Such quantities are speed and load. But the picture of power stream in a motor or in a drive system is presented in the literature in the form of traditional Sankey diagram of power decrease in the direction of power flow. The paper refers to Matthew H. Sankey’s diagram in his paper The Thermal Efficiency of Steam Engines – of 1898. Presented is also a diagram of power increase in the direction opposite to the direction of power flow. The diagram, replacing the Sankey diagram, opens a new perspective of research into power of energy losses and efficiency of motors and drive systems.
PL
Sprawny przepływ materiałów w przedsiębiorstwie produkcyjnym pozwala między innymi na redukcję kosztów związanych z transportem wewnętrznym. Aby osiągnąć taki stan, należy poddać analizie rozmieszczenie stanowisk produkcyjnych, przy czym kryterium optymalizacyjnym powinien być swobodny i możliwie krótki przepływ materiałów. W artykule analizie poddano zagadnienie minimalizacji czasu transportu materiałów między magazynem a halą produkcyjną oraz pomiędzy poszczególnymi stanowiskami roboczymi. Jako metody wspomagające wyznaczenie optymalnego rozmieszczenia stanowisk przyjęte zostały: metoda ścieżki krytycznej, metoda trójkątów Schmigalli oraz wykres Sankey’a. Poprzedzone analizą teoretyczną badania potwierdzają duże znaczenie dokładnej analizy już na etapie projektowania rozmieszczenia stanowisk w świetle powstawania kosztów produkcyjnych. Artykuł został napisany na podstawie badań zrealizowanych we współpracy z przedsiębiorstwem produkcyjno-handlowo-usługowym PAKCER w Tułowicach (województwo opolskie).
EN
The efficient materials flow allows to reduce costs connected to internal transport in manufacturing company. This should be preceded by an analysis of machine system design, based on effortless and quick materials flow. The author focuses on the minimization of the materials transport time, not only between machines but also between warehouse and the production hall. She uses three methods, which are critical path method, Schmigalla method of triangles and Sankey diagram. Researches, preceded by and theoretical analysis, show that proper analysis of layout is essential task in minimizing costs that do not generate the added value. The article is based on researches and cooperation with the manufacturing company, PAKCER, which is placed in Tułowice in the opolskie province.
PL
W pracy przedstawiono analizę rozpływu mocy w układzie kogeneracyjnym z silnikiem Stirlinga jednostronnego działania. Zobrazowane zostały straty występujące w układzie kogeneracyjnym. Na modelu bryłowym stanowiska przedstawione zostały straty wejściowe (strumienia ciepła, straty w wyniku konwekcji oraz straty ogrzewania powietrza), straty na wymiennikach ciepła, na przekładni pasowej, przesyłu, magazynowania energii w akumulatorze elektrochemicznym. Autorzy przeanalizowali również możliwość odbioru energii elektrycznej z układu kogeneracyjnego. Niniejsza analiza jest wstępnym etapem, który poprzedza modelowanie procesu kogeneracji energii w układach z silnikiem Stirlinga. Zwrócono także uwagę na wymagania stawiane doborowi akumulatora elektrochemicznego współpracującego z układem kogeneracyjnym. Akumulator jest wtórnym źródłem mocy, które cechuje praca odwracalna (magazynuje energię elektryczną).
EN
The paper presents analysis of power flow in a cogeneration system with a single-acting Stirling engine. The paper shown losses occurring in the cogeneration system. At solid model is presented input loss (heat flux losses, losses due to convection air heating), loss on heat exchangers for the transmission belt, losses on electric motor and storage losses of energy in an electrochemical battery. The authors also analyzed the possibility of receiving electricity from the cogeneration system. This analysis is initial stage which precedes the modelling process of cogeneration systems with the Stirling engine. Attention was also drawn to the requirements of the electrochemical battery selection cooperating with cogeneration system. The battery is a secondary source of power, which is characterized by reversible work (stores electrical energy).
EN
Losses and energy efficiency of every drive motor must be presented as functions of physical quantities independent of losses in the motor. Such quantities are speed and load required by the machine or device driven by the motor, changing in the drive operating field. Speed and load of the motor decide of the instantaneous useful power of the motor and also in a differentiated way of kinds and values of losses occurring in the motor. However, losses and energy efficiency of the hydrostatic drive motors and systems are evaluated by researchers and manufacturers as functions of parameters depending on the losses. The basic cause of such situation is the traditional, commonly accepted but erroneous, view of the power flow in the drive motors and systems represented by the Sankey diagram of power decrease in the direction of power flow. It is necessary to replace the Sankey diagram by the proposed diagram of increase of power in the motor and in the drive system in the direction opposite to the direction of power flow. The proposed view of losses and energy efficiency should be applied to all types of motor and drive systems. The aim of this paper is showing the resulting problems of the above postulates, exemplified by operation of a rotational displacement motor in a hydrostatic drive system. In order to make possible objective evaluation of the energy behaviour of different motor and system solutions and sizes, the losses and energy efficiency should be described and compared as dependent on the motor speed coefficient ωM and load coefficient changing in the drive system operating field (0 ≤ ωM< ωMmax, 0 ≤ M< Mmax). The presented proposals open a new perspective of unavoidable research of drive motors and systems, making it possible to compare objectively the energy efficiency of different types of motors and drive systems.
EN
Cogeneration systems using a Stirling engine [2] are currently being developed and promoted by the European Union [1]. On the other hand, the EU climatic package obligates Polish energy producers to buy 100% CO2 emission rights from 2020 onwards. At that time, according to the experts a ton of CO2 could reach the price of 63.5 Euro. Attention is drawn to the fact that it is only then that nuclear power plants will become profitable, in the same way as wind power plants. This could result in substantial growth of energy prices, both for the economy and for households [3]. The paper presents the experimental research of a cogeneration system with a one-way Alpha type Stirling engine. The impact of the upper heat source and the type of working gas (helium and nitrogen) on the load capacity of the cogeneration system was studied. Based on a Sankey diagram, the power spread of the cogeneration system was analysed. On the basis of experimental research, a model was created of a cogeneration system consisting of the following submodels: Stirling engine of the second order, belt transmission, electric motor and an electrochemical battery. The Stirling engine was installed in a testbed, in the mechatronic lab at the Faculty of Automotive and Construction Machinery Engineering (SIMR) of Warsaw University of Technology. Furthermore, the impact of regenerator efficiency on the efficiency of the Stirling Engine was examined, which in turns impacts the efficiency of the entire cogeneration system.
EN
Working liquid compressibility may considerably change the values and proportions of coefficients of volumetric and mechanical energy losses in the displacement pump used in a hydrostatic drive system. This effect can be particularly seen in the operation under high pressure and also in the system, where aeration of the working liquid can occur. In the Part I a diagram is presented, proposed by the author, of power increase in a hydrostatic drive system (hydraulic motor, pump) opposite to the direction of power flow, replacing the Sankey diagram of power decrease in the direction of power flow. Mathematical model is presented of volumetric losses in the pump and its laboratory verification.
EN
Working liquid compressibility may considerably change the values and proportions of coefficients of the volumetric and mechanical energy losses in the displacement pump used in a hydrostatic drive system. This effect can be particularly seen in the operation under high pressure and also in the system, where aeration of the working liquid can occur. In the Part II the mathematical model is presented of the torque of mechanical losses in the pump and its laboratory verification. Conclusions are drawn regarding the effect of working liquid compressibility on the mechanical and volumetric losses in the pump.
PL
W niniejszym artykule przedstawiono strukturę zużycia, w przedsiębiorstwie hutniczym mediów energetycznych, m.in. takich jak: energia elektryczna, gaz ziemny, gaz koksowniczy, gazy techniczne (argon, azot, tlen), sprężone powietrze, woda oraz para wodna w przedsiębiorstwie hutniczym. Na podstawie aktualnych danych sporządzono wykresy Sankey`a dla wybranych mediów na poszczególne jednostki technologiczne. Interpretacji wyników dokonano w oparciu o wartości zamieszczone w dokumentach referencyjnych.
EN
In his article presented the consumption structure of energy carriers among other thinks such as: an electric energy, a natural gas and a coke-oven gas, technical gases (argone, nitrogen, oxygen), a compressed air, a water, a steam in metallurgical company. Based on a actually date made the Sankey diagrams of the heat expenditure of analyzed energy carriers on the particular technological units. The results interpretation achieved on the basis of values located in references documents.
EN
The operating field of hydrostatic drive system is presented. Subdivision of the hydraulic motor and pump work parameters into parameters independent of and dependent on the operation of displacement machines and the system is justified. A research project is proposed aimed at development of methods determining the energy characteristics of pumps and rotational hydraulic motors as well as modified methods of determining the energy characteristics of hydrostatic drive systems with selected structures of hydraulic motor speed control. The paper is an extended version of reference [11].
EN
The methane to methanol conversion via esterification is an interesting method which makes it possible to eliminate the otherwise necessary phase of obtaining synthesis gas. On the basis of laboratory investigations mass balances for this process were determined. Preliminary assessment of the way of conducting the process and possibilities of practical applications of this technology was also made. It was pointed out that regardless of any possible modifications of methane to methanol conversion via esterification redundant sulfuric acid will always be produced during ester hydrolysis. Production of methanol from methane using this method can only be done when it is combined with producing other substances, which needs using H2SO4.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.