Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  STEL
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Instalacje wentylacyjne są zazwyczaj regulowane w zależności do temperatury lub wilgotności powietrza. Ani CO2 ani CO nie są wartościami zadanymi. Maksymalne dopuszczalne stężenia CO2 i CO są podane w zaleceniach lub normach: WHO, USA, niemieckich i polskich. Ponadto istnieją wymagania Europejskiej Organizacji Wyposażenia Garaży dotyczące jakości powietrza i wentylacji. Celem badań była ocena jakości powietrza wentylacyjnego w warsztacie samochodowym w aspekcie ekspozycji ludzi na CO2 i CO. Wykonano jednotygodniowe pomiary stężenia dwutlenku węgla i tlenku węgla w powietrzu. Pomiary bieżące były wykonywane co 5 minut i uśredniane w celu określenia najwyższego stężenia chwilowego i najwyższego stężenia pułapowego. Na podstawie wyników badań stwierdzono, że jakość powietrza nie spełnia wymagań i w warsztacie samochodowym powinna być wykonana instalacja wentylacyjna.
EN
Ventilation systems are controlled due to temperature or humidity of air, ordinarily. Neither CO2 nor CO is a reference signal. Maximal acceptable concentrations of CO2 and CO are compared among WHO, USA, German and Polish standards. In addition, the requirements of European Garage Equipment Association (EGEA) exist with regard to air quality and ventilation systems. The aim of research is indoor air quality assessment in an auto repair shop in the aspect of exposure of people to CO2 and CO. One-week measurements of carbon dioxide and carbon monoxide concentration were conducted. Consecutive measures were taken every 5 minutes, then they were averaged to obtain 15-minute short-term exposure limit and maximum acceptable 8-hour concentration © 2006-2019 Wydawnictwo SIGMA-NOT Sp. z o.o.
PL
Chinolina (CAS Nr 91-22-5) jest bezbarwną cieczą o przenikliwym, nieprzyjemnym zapachu, która ciemnieje pod wpływem światła. Substancja rozpuszcza się w: alkoholu, eterze, acetonie oraz disiarczku węgla. Gwałtownie reaguje z nadtlenkiem wodoru, co stwarza niebezpieczeństwo wybuchu. Chinolina jest związkiem chemicznym powszechnie stosowanym w różnych gałęziach przemysłu, przede wszystkim do produkcji: barwników ftalocyjaninowych, środków farmaceutycznych oraz preparatów antykorozyjnych. Znalazła również zastosowanie w medycynie jako środek do konserwacji preparatów anatomicznych. Narażenie zawodowe na chinolinę dotyczy osób uczestniczących w procesie produkcji tej substancji lub stosujących produkty powstałe z jej użyciem. W Polsce do Centralnego Rejestru Danych o Narażeniu na Substancje, Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym zgłoszono narażenie na chinolinę: w 2012 r. – 266 pracowników, w 2014 r. – 32 pracowników oraz w 2015 r. – 104 pracowników. W warunkach pracy zawodowej głównymi drogami narażenia na chinolinę są: układ oddechowy, przewód pokarmowy i skóra. Do najczęstszych objawów ostrego zatrucia zawodowego chinoliną należą: podrażnienie oczu i skóry, uszkodzenia rogówki, siatkówki lub nerwu wzrokowego oraz bóle i zawroty głowy. Wyniki testów przeprowadzonych w warunkach in vitro i in vivo wykazały, że chinolina działa mutagennie i genotoksycznie. Związek ten wykazywał również działanie rakotwórcze na zwierzęta. Nowotwory obserwowane u zwierząt dotyczyły wątroby (naczyniak krwionośny śródbłonka naczyń, naczyniakomięsak krwionośny, rak wątrobowokomórkowy), którą uznano za narząd krytyczny działania związku. Na podstawie danych literaturowych związek został sklasyfikowany jako substancja mutagenna kategorii zagrożenia 2. i substancja rakotwórcza kategorii zagrożenia 1.B. Na podstawie szacowania ryzyka zawodowego związanego z narażeniem człowieka na chinolinę i dyskusji na posiedzeniu Międzyresortowej Komisji ds. NDS i NDN, zaproponowano przyjęcie wartości NDS dla chinoliny na poziomie ryzyka 1 · 10-3 , czyli 0,6 mg/m3 . Nie było podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) i dopuszczalnego stężenia w materiale biologicznym (DSB). Związek oznakowano dodatkowo: „Carc. 1B” (substancja rakotwórcza kategorii zagrożenia 1.B), literą „I” (substancja o działaniu drażniącym) oraz „skóra” (wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową).
EN
Quinoline is a colorless hygroscopic liquid with a pungent odor. It darkens with age. It is soluble in alcohol, ether, benzene and carbon disulfide, and is slightly soluble in water. It is used as a solvent and a decarboxylation reagent, and as a raw material in manufacturing dyes, antiseptics, fungicides, niacins and pharmaceuticals. The occupational exposure to quinoline applies to a person involved in the production of the substance or using products manufactured from this substance. The primary routes of potential human exposure to quinoline are ingestion, inhalation, and dermal contact. The most common symptoms of poisoning include eye and skin irritation, damage to the cornea, the retina or optic nerve, headaches and dizziness. Quinoline produced mutations in bacteria in the presence of metabolic activation, unscheduled DNA synthesis in rat hepatocytes, and DNA adducts. Studies of carcinogenicity in animals indicated that administration of quinoline (in feed) increased significantly the incidence of vascular tumors (hemangiomas or hemangiosarcomas) of the liver. Quinoline is classifield as mutagenic category 2 (substance, which is consider as mutagenic to humans) and to category 1B of carcinogenic substances (potent carcinogen to humans – may cause cancer). According to the above data, the MAC value for quinoline was established at 0.6 mg/m3 . MAC- STEL value was not established. The substance was labeled with “sk” (absorption through the skin can be similarly important as inhalation) and “I” – irritant substance.
PL
Tlenek żelaza(III), (Fe2O3, nr CAS 1309-37-1) w warunkach naturalnych występuje jako ruda żelaza. Najpowszechniejsza z nich (hematyt) zawiera około 70% czystego żelaza. Tlenek żelaza(III) jest stosowany jako czerwony barwnik w przemyśle: ceramicznym, szklarskim, papie7rniczym oraz jako surowiec ścierny w obróbce metali (skrawanie). Tlenek żelaza(II), (FeO, CAS 1345-25-1) występuje rzadko jako minerał – wustyt. Jest stosowany jako czarny barwnik w kosmetyce oraz do otrzymywania tuszu do tatuażu. Tetratlenek triżelaza (Fe3O4, CAS 1309-38-2; 1317- -61-9) należy do minerałów pospolitych (magnetyt). Wykazuje silne właściwości magnetyczne. Tetratlenek triżelaza występuje w skałach magmowych (gabro, bazalt). W Polsce minerał ten występuje na Dolnym Śląsku: w Kowarach, w Kletnie, okolicach Szklarskiej Poręby, jest również spotykany w bazaltach okolic Złotoryi i na Suwalszczyźnie. Tetratlenek triżelaza jest najbogatszą i najlepszą dla przemysłu rudą żelaza. Narażenie zawodowe na tlenki żelaza występuje w górnictwie oraz hutnictwie przy produkcji: żelaza, stali i wyrobów metalowych. Na tlenki żelaza są narażeni pracownicy zatrudnieni przy mieleniu rud i polerowaniu srebra oraz: spawacze, ślusarze i tokarze. Według Państwowej Inspekcji Sanitarnej w 2013 r. w narażeniu na tlenki żelaza o stężeniach przekraczających obowiązującą wartość NDS (5 mg/m3) pracowało w Polsce 389 osób, a w 2014 r. – 172 osoby. Po jednorazowym, dożołądkowym podaniu szczurom tlenku żelaza(III) wartość LD50 ustalono na ponad 10 000 mg/kg mc., natomiast po podaniu dootrzewnowym – 5500 mg/kg mc. Analiza wyników badań wykonanych na zwierzętach laboratoryjnych wykazała, że zarówno po jednorazowym, jak i wielokrotnym dotchawiczym i inhalacyjnym narażeniu na tlenek żelaza(III) notowano najczęściej przejściowe nasilenie stresu oksydacyjnego i występowanie reakcji zapalnych. Tlenek żelaza(III) nie powodował działania genotoksycznego i rakotwórczego. W dostępnej literaturze nie ma informacji o jego wpływie na: płodność, rozrodczość oraz przebieg ciąży. Dane dotyczące toksyczności przewlekłej tlenków żelaza dla ludzi narażonych w środowisku pracy są nieliczne i dotyczą głównie narażenia pracowników na tlenek żelaza(III). W przypadku badań epidemiologicznych, wszystkie przedstawione w dokumentacji informacje pochodzą z obserwacji ludzi narażonych na łączne działanie tlenków żelaza i innych czynników. Nie podano, czy narażenie zawodowe było związane z konkretnym tlenkiem żelaza, oraz na jakie stężenia pracownicy byli narażeni. Najczęściej spotykanym skutkiem toksycznym w narażeniu zawodowym: górników i hutników rudy żelaza oraz spawaczy, były niewielkie zmiany zwłóknieniowe w płucach oraz pylica żelazowo-krzemowa (widoczne w badaniu RTG). Siderozę (żelazicę, pylicę żelazową) uważa się od lat za chorobę zawodową górników i hutników rud żelaza. Ponadto u: górników, hutników i spawaczy, zanotowano przypadki raka płuc, jednak były one spowodowane łącznym narażeniem na inne związki, m.in.: radioaktywny radon, rakotwórczy chrom, mangan, nikiel, inne tlenki (SiO2, ZnO, CO, NO, NO2, MgO) oraz spaliny z silników diesla. Według IARC tlenek żelaza(III) należy do grupy 3. (nie może być klasyfikowany pod względem działania rakotwórczego na ludzi). Pyły tlenku żelaza(III) mogą się gromadzić w tkance łącznej płuc, co może być przyczyną występowania obszarów zwłóknienia, szczególnie w wyższych partiach zewnętrznych części płatów płucnych. Skutki te były widoczne tylko w badaniu rentgenowskim (RTG). Pylica płuc spowodowana narażeniem na tlenki żelaza przebiegała zwykle bezobjawowo (brak objawów klinicznych i zmian w parametrach funkcji płuc). Podstawą do wyznaczenia propozycji wartości NDS dla frakcji wdychalnej tlenków żelaza było stężenie 10 mg Fe/m3, które u ludzi narażonych zawodowo na tlenek żelaza(III) ponad 10 lat nie powodowało zmian w płucach (wartość NOAEL). Po zastosowaniu współczynnika niepewności (równego 2) związanego z wrażliwością osobniczą otrzymano wartość NDS – 5 mg/m3 (w przeliczeniu na Fe). Taką samą wartość NDS dla frakcji wdychalnej tlenku żelaza(III), (5 mg/m3) otrzymano z badań na chomikach syryjskich narażonych inhalacyjnie na pyły tlenku żęlaza(III) o stężeniu 40 mg/m3 przez całe życie (wartość LOAEL). Podstawą wartości NDS dla frakcji respirabilnej tlenków żelaza były 10-letnie obserwacje ludzi narażonych na tlenek żelaza(III) przy jego produkcji. U 12% pracowników narażonych na frakcję respirabilną o średnich stężeniach 10 ÷ 15 mg/m3 obserwowano zmiany w badaniu RTG płuc. Wartość 10 mg/m3 przyjęto za wartość LOAEL. Po zastosowaniu odpowiednich współczynników niepewności, wartość NDS dla frakcji respirabilnej tlenków żelaza zaproponowano na poziomie 2,5 mg/m3. Autorzy dokumentacji zaproponowali pozostawienie obowiązującej wartości NDSCh dla tlenków żelaza na poziomie 10 mg/m3 dla frakcji wdychanej oraz wprowadzenie wartości NDSCh – 5 mg/m3 dla frakcji respirabilnej. Normatywy oznakowano literą „I”, ze względu na jego działanie drażniące.
EN
Iron (III) oxide, (Fe2O3, nr CAS 1309-37-1) in natural conditions occurs as iron ore. The most common (hematite) contains about 70% pure iron. Iron (III) oxide is used as a red dye in ceramics, glass and paper industries and as a raw material for abrasive metalworking (cutting). Iron (II) oxide, (FeO, CAS 1345-25-1) occurs as a mineral wurtzite and is used as a black dye in cosmetics and as a component of tattoo ink. Iron (II) iron (III) oxide (Fe3O4, CAS 1309-38-2; 1317- -61-9) is a common mineral. It has strong magnetic properties (so called magnetite). It occurs in igneous rocks (gabbro, basalt). It is the richest and the best iron ore for industry. Occupational exposure to iron oxides occurs in the mining and metallurgical industry in the production of iron, steel and its products. Welders, locksmiths, lathes and workers employed in milling ores and polishing silver are exposed to iron oxides. According to data from the State Sanitary Inspection, in 2013, 389 people in Poland were exposed to iron oxide in concentrations exceeding the current NDS (5 mg/m3 ) and in 2014 – 172 people. After single and multiple intratracheal and inhalation exposure of animals, transient intensification of oxidative stress and inflammatory reactions were reported. Iron (III) oxide did not cause genotoxic and carcinogenic effects. In literature, there are no data on its effects on fertility, reproduction and pregnancy. Data on chronic toxicity of iron oxides for humans exposed in working environment are limited. In epidemiological studies, all information presented in the documentation comes from observations of people exposed to the combined effects of iron oxides and other factors. It is not stated whether occupational exposure was related to the specific iron oxide and to what concentrations workers were exposed. The most commonly encountered toxic effect in the occupational exposure of iron ore miners and iron welders and welders was minor lung fibrosis lesions and iron-silicon dust (as seen in the RTG study). Siderose is the occupational disease of miners and iron ore metallurgists. Moreover, cases of lung cancer have been reported in miners, steel workers and welders, but they were caused by total exposure to other compounds, including radioactive radon, carcinogenic chromium, manganese, nickel, other oxides (SiO2, ZnO, CO, NO, NO2, MgO) as well as exhaust gases from diesel engines. According to IARC, iron (III) oxide belongs to group 3 (cannot be classified as carcinogenic to humans). Iron (III) oxides can accumulate in a lung tissue, this process may be responsible for the occurrence of fibrosis sites, particularly in higher parts of external lung parts. These effects were visible in the X-ray examination only. Pneumoconiosis (siderosis) caused by exposure to iron oxides is usually asymptomatic (lack of clinical symptoms and changes in lung function parameters). The basis for the proposed MAC-TWA value for inhalable iron oxide fraction was NOAEL of 10 mg Fe/m3 . People exposed for more than 10 years to iron (III) oxide had no pulmonary changes. After application of an uncertainty factor of 2 (for differences in personal sensitivity in humans), the MAC-TWA value for the iron oxide fraction was proposed at 5 mg/m3 (calculated as Fe). The same observations on humans were the basis for calculating the MAC-TWA value for respirable fraction of iron (III) oxide. On 12% of workers exposed to respirable fraction at mean concentrations of 10 ÷ 15 mg/m3 , changes in pulmonary X-ray were observed. The value of 10 mg/m3 was assumed as LOAEL. After applying the appropriate uncertainty coefficients, the MAC-TWA value for the iron oxide respirable fraction was proposed at 2.5 mg/m3 . The authors propose to leave the short-term value (STEL) of 10 mg/m3 for inhaled fraction for iron oxides and to introduce STEL value of 5 mg/m3 for respirable fraction. It is recommended to label the substances with "I" - irritant substance.
PL
Heksachlorobenzen jest nierozpuszczalnym w wodzie ciałem stałym o wysokiej lipofilności, wysokiej temperaturze topnienia i wrzenia oraz dużej gęstości par. Związek był stosowany w: przemyśle zbrojeniowym, elektrotechnicznym i chemicznym oraz jako fungicyd. Heksachlorobenzen jest obecnie stosowany do celów laboratoryjnych. Związek ten, oprócz syntezy docelowej, powstaje jako produkt uboczny podczas syntezy rozpuszczalników chloroorganicznych. Zgodnie z danymi z Centralnego Rejestru Danych o Narażeniu na Substancje, Preparaty, Czynniki i Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym, narażenie na heksachlorobenzen w Polsce wzrasta, pomimo zakazu jego stosowania. W 2005 r. na heksachlorobenzen było narażonych 28 osób, natomiast w 2014 r. już 167 (kobiet i mężczyzn). Zgodnie z Konwencją sztokholmską w sprawie trwałych zanieczyszczeń organicznych, która została przyjęta w 2001 r. i weszła w życie dnia 17.05.2004 r., zakazano: wytwarzania, wprowadzania do obrotu i stosowania heksachlorobenzenu, wymienionego w załączniku I do rozporządzenia (WE) nr 850/2004 Parlamentu Europejskiego i Rady z dnia 29.04.2004 r. dotyczącego trwałych zanieczyszczeń organicznych i zmieniającego dyrektywę 79/117/EWG (Dz. Urz. WE L 158 z dnia 30.04.2004 r., 7), w postaci samoistnej lub w mieszaninach (preparatach) czy też jako składnika artykułów. Zakazu tego nie stosuje się do heksachlorobenzenu używanego w badaniach laboratoryjnych lub jako substancji odniesienia. W dostępnym piśmiennictwie nie ma informacji na temat objawów ostrego zatrucia heksachlorobenzenem wśród ludzi. Zatrucia przewlekłe heksachlorobenzenem były spowodowane jego pobieraniem z pożywieniem, co miało miejsce w Turcji w końcu lat 50. ubiegłego stulecia. Zatrucia te miały charakter epidemii. Związek ten u ludzi indukował, m.in.: porfirię skórną późną, hiperpigmentację skóry i nadmierne owłosienie, a także zmiany neurologiczne oraz ortopedyczne. Na podstawie wartości median dawek i stężeń śmiertelnych heksachlorobenzen jest umieszczony poza klasyfikacją substancji chemicznych, opartą na kryterium ostrej toksyczności. W warunkach powtarzanego narażenia zwierząt na heksachlorobenzen obserwowano działanie: porfirynogenne, hepatotoksyczne, w tym indukcję mikrosomalnych monoksygenaz, tyreotoksyczne i ototoksyczne związku. Heksachlorobenzen jako słaby ligand receptorów AhR wykazuje działanie dioksynopodobne. Wywołuje zaburzenia, m.in. w: gruczole tarczowym, jajnikach i nadnerczach, zmniejszając stężenia: hormonów tarczycy, estrogenów i glikokortykosteroidów oraz liczbę ich receptorów. Heksachlorobenzen nie działał mutagennie i genotoksycznie w testach w warunkach in vitro i in vivo.W badaniach epidemiologicznych nie udowodniono rakotwórczego działania heksachlorobenzenu u ludzi, natomiast na podstawie wyników licznych badań doświadczalnych stwierdzono: rakotwórcze, promotorowe i kokancerogenne działanie tego związku. Międzynarodowe i narodowe instytucje zaklasyfikowały heksachlorobenzen do kancerogenów grupy 2.B (IARC), kategorii 1.B (UE, Polska) i grupy A3. (ACGIH). W SCOEL nie ustalono w 2014 r. wartości OEL, ze względu na działanie kumulacyjne związku, a do oceny narażenia zalecono wartość dopuszczalnego stężenia w materiale biologicznym (BLV) wynoszącą 150 μg heksachlorobenzenu/l surowicy lub osocza krwi oraz oznakowanie „skin”, ze względu na wchłanianie związku przez skórę. Heksachlorobenzen jest związkiem rakotwórczym dla zwierząt. Konsultacje publiczne propozycji SCOEL dla heksachlorobenzenu odbyły się w sierpniu 2014 r. i Polska nie zgłosiła do tych propozycji uwag. Heksachlorobenzen został ujęty w wykazie substancji, dla których powinny być ustalone wartości wiążące (BOELV). Ze względu jednak na zakaz stosowania związku (Konwencja sztokholmska) oraz jego działanie kumulacyjne, wartości BOELV nie ustalono. Heksachlorobenzen wykazuje toksyczność rozrodu i rozwoju. U samic różnych gatunków związek działał gonadotoksycznie w wyniku: zaburzeń hormonalnych, uszkodzenia pęchrzyków jajnikowych i komórek jajowych, co prowadziło do upośledzenia procesu owulacji oraz zapłodnienia. Ponadto, heksachlorobenzen wywierał szkodliwe działanie na prenatalny i postnatalny rozwój potomstwa. Podstawą do obliczenia wartości NDS dla heksachlorobenzenu były wyniki badań nad gonadotoksycznym działaniem tego związku u samic makaków jawajskich, narażanych drogą pokarmową przez 13 tygodni. Na podstawie wartości NOAEL wynoszącej 0,01 mg/kg mc./dzień oraz łącznego współczynnika nie- pewności 24, obliczono wartość najwyższego dopuszczalnego stężenia (NDS) związku, którą zaproponowano na poziomie 0,003 mg/m³, łącznie z oznakowaniem „skóra”, które informuje, że wchłanianie tej substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową. Nie ma podstaw do zaproponowania wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) heksachlorobenzenu. Zgodnie z zaleceniami SCOEL, zaproponowano wartość dopuszczalnego stężenia w materiale biologicznym (DSB) na poziomie 150 µg heksachlorobenzenu/l osocza lub surowicy krwi.
EN
Hexachlorobenzene is a solid substance, insoluble in water, highly lipophilic with high melting and boiling point and high vapor density. The compound was used in war, electrotechnical, and chemical industries. Nowadays hexachlorobenzene is used for laboratory purposes. Except for destination synthesis this compound originates as a by-product during synthesis of chloroorganic solvents. In Poland, the exposure to hexachlorobenzene is increasing despite interdiction to its application. In 2005 in Poland, 28 people were exposed to hexachlorobenzene, whereas in 2014 exposed were 167 (men and women). According to Stockholm convention (2001) on persistent organic pollutions (POPs) there is prohibition of production, introduction to trade turnover and usage of hexachlorobenzene. There is no information about symptoms of acute poisoning by hexachlorobenzene in humans. Chronic intoxications by this compound were caused by uptake it with food, which happened in Turkey towards the end of 50s of last century. These poisonings had epidemic character. The chemical induced in humans, e.g., porphyria cutanea tarda, skin hyperpigmentation and hirsutism, neurological and orthopedic disorders. The median lethal dose and concentration values in animals indicate that hexachlorobenzene is outside of the classification of chemicals based on an acute toxicity. In experimental animals repeatedly exposed to this chemical, porphyrinogenic, hepatotoxic, thyreotoxic, and ototoxic effects were observed. Hexachlorobenzene as a weak ligand of AhR receptors shows dioxine-like activity. It causes functional disturbances in thyroid gland, ovaries, adrenal gland and leads to reduction of thyroid hormone concentrations, estrogens, glycocorticoids and their receptors. Hexachlorobenzene is not mutagenic and genotoxic in vitro and in vivo. The epidemiologic examinations did not proved carcinogenic effects of hexachlorobenzene in humans, however, numerous experimental studies noted its carcinogenic, promoting and cocarcinogenic activities. International and national institutions classified hexachlorobenzene to a carcinogen category 2.B (IARC), 1.B (EU, Poland) and to A.3 group (ACGIH). SCOEL did not established OEL value for hexachlorobenzene, since the compound has cumulative effect. Admissible concentration value in biological material (BLV) of 150 µg/l of serum or plasma and labeling „skin” because the compound is resorbed through the skin was recommended for assessing the exposure to hexachlorobenzene. Hexachlorobenzene is included in the register of the substances for which binding BOELV values should be established. Because of the prohibition (Stockholm convention) and cumulative effect of hexachlorobenzene BOELV value was not established. Hexachlorobenzene demonstrates reproductive and developmental toxicities. In females of different species, gonadotoxic effects were seen as result of hormonal disturbances, ovarian and egg cells injury which led to ovulation and fertilization impairment. The results of study on gonadotoxic effect of hexachlorobenzene in the female cymonolgus monkey exposed per os for 13 weeks were basis for calculating MAC value. The NOAEL value at level of 0.01 mg/kg b.w./day and joind uncertainty factor value of 24 were used to calculate MAC value at level of 0.003 mg/m3. It was recommended to label the substance with “Skin”. No STEL value has been recommended. In agreement with recommendation of SCOEL, the BLV value at level of 150 µg/l of serum or plasma has been proposed.
5
Content available Epoksyetan
PL
Epoksyetan (tlenek etylenu) jest bezbarwnym gazem o słodkawym zapachu przypominającym zapach eteru, który został zaklasyfikowany pod względem rakotwórczości i mutagenności do kategorii 2. grupy produktów niebezpiecznych. Epoksyetan jest substancją działającą drażniąco na skórę i błony śluzowe. W przeszłości epoksyetan był powszechnie stosowany jako środek do sterylizacji materiałów medycznych, sprzętu i narządzi chirurgicznych, a także do fumigacji produktów spożywczych, ubrań, kosmetyków i mebli. Następstwem ostrego narażenia inhalacyjnego ludzi na ten związek są: bóle głowy, nudności, wymioty, senność, brak koordynacji oraz podrażnienie błon śluzowych. Epoksyetan w kontakcie ze skórą powoduje: pęcherze, obrzęki, zaczerwienie, oparzenia lub odmrożenia, natomiast skutkiem narażenia przewlekłego mogą być zaburzenia neurologiczne w postaci neuropatii obwodo-wej, zaburzeń pamięci oraz uszkodzenia wzroku w postaci zmętnienia soczewki. Medialna dawka śmiertelna po podaniu epoksyetanu do żołądka szczurów wynosi 330 mg/kg, a wartość medialnego stężenia śmiertelnego w następstwie 4-godzinnego narażenia wynosi powyżej 2500 mg/m3.Narażenie zwierząt na epoksyetan o stężeniach zbliżonych do śmiertelnych powoduje: podrażnienie błon śluzowych, zaburzenia koordynacji ruchowej oraz depresję ośrodkowego układu nerwowego i paraliż tylnych łap. Objawy trwającego kilkanaście tygodni narażenia inhalacyjnego zwierząt doświadczalnych są podobne do obserwowanych u zwierząt narażanych krótkotrwale na ten związek. Epoksyetan jest czynnikiem powodującym wzrost częstości mikrojąder, aberracji chromosomowych, wymian chromatyd siostrzanych zarówno u narażanych ludzi, jak i u zwierząt. Epoksyetan tworzy addukty z makrocząsteczkami, w tym z hemoglobiną, co jest wykorzystywane do monitorowania skutków narażenia zawodowego na tę substancję. Epoksyetan wykazuje również działanie mutagenne w różnych modelach doświadczalnych. Stwierdzono, że narażenie na epoksyeten jest przyczyną wzrostu częstości nowotworów: międzybłoniaka otrzewnej, glejaka mózgu i raka płuca u zwierząt oraz raka żołądka i białaczek u ludzi. Epoksyetan wywiera niekorzystny wpływ na przebieg i wynik ciąży u kobiet, ponieważ często prowadzi do wzrostu częstości poronień samoistnych, a u zwierząt laboratoryjnych powoduje zaburzenia rozrodu. Epoksyetan dobrze wchłania się w drogach oddechowych i w układzie pokarmowym, a główną drogą jego wydalania jest układ moczowy. U większości gatunków ssaków związek ten jest metabolizowany do glikolu etylowego. W większości państw najwyższe dopuszczalne stężenie (NDS) epoksyetanu wynosi 1,8 mg/m3, a obowiązujące w Polsce normatywy wynoszą 1 mg/m3 wartość NDS i 3 mg/m3 wartość NDSCh. Proponuje się pozostawienie wartości NDS etoksyetanu na poziomie 1 mg/m3 i nieustalanie wartości NDSCh, gdyż skutki działania drażniącego u ludzi występują w następstwie narażenia na epoksyetan o dużym stężeniu, powyżej 6 mg/m3. Proponuje się także oznakowanie normatywu informacjami o tym, że jest to związek : „Rakotw. Kat. 2.”, „Muta. Kat. 2.” i „Ft” – substancja działająca toksycznie na płód oraz „I” – substancja o działaniu drażniącym.
EN
Epoxyethane (ethylene oxide) is a colourless flammable gas at room temperature with a sweet odour. It has been classified as a category 2 carcinogen and mutagen. Epoxyethane is irritating on the skin and mucous membranes. In the past it was used in hospital sterilization, and also in fumigation of food, clothes, cosmetics and furniture. The main symptoms of acute inhalation toxicity in human are headaches, nausea and generally persistent periodic vomiting. Dyspnoea, irritation of the eyes and upper respiratory mucosa, heart damage, excitation, stupor, vertigo and loss of consciousness have also been observed. Epoxyethane in contact with te skin causes itching, erythema and oedema, blisters and frostbite. Chronic inhalation of human leads to multiple neuropathy, sensory disturbance as well as the damage of vision (corneal clouding). Acute toxicity to animals – LD50 per os for rats was determined as 330 mg/kg. The 4-hour LC50 for the rat was determined as above 2500 mg/m3. In animal exposure to epoxyethane in lethal concentrations, the symptoms were lacrimation, nasal discharge, disorders of locomotive coordination, depression of the central nervous system and paralysis (particularly of the hind-quarters). Ethylene oxide is a weak alkylating agent that is directly mutagenic and carcinogenic. It is also genotoxic and clastogenic. Epoxyethane adducts with haemoglobin, what should be used for biomonitoring of exposed persons. The carcinogenicity of epoxyethane is clearly evident from animal experiments. In rats it has in-duced brain tumours, mononuclear cell leukaemias and peritoneal mesotheliomas; in mice lung adenomas and carcinomas. In humans it has induced stomach cancer and leukemia, but this has not been sufficient to classify epoxyethane as a confirmed human carcinogen. For women exposed occupationally to ethylene oxide an increased incidence of spontaneous abortion has been established. In animals it has disordered the reproduction in dose toxic to dams. Epoxyethane is readily taken by lung and the digestive tract and the main route of its elimination from the organism is the urinary tract. Ethylene glycol is the major metabolite of epoxyethane in mammalians. In most countries the occupational exposure limit for epoxyethane is 1.8 mg/m3. In Poland MAC(TWA) = 1 mg/m3 and MAC(STEL) = 3 mg/m3. The Expert Group proposed not to change the MAC(TWA) for epoxyethane (1 mg/m3) and not to establish MAC(STEL), because the irritation in humans occupationally exposed to this substance was observed after exposure above 6 mg/m3.
6
Content available Chlor
PL
Chlor jest gazem o silnym duszącym zapachu, cięższym od powietrza i zaliczanym do substancji niebezpiecznych. Chlor ma wszechstronne zastosowanie, głównie jako środek dezynfekcyjny, czynnik utleniający lub chlorujący używany do produkcji chlorowanych związków organicznych. Stosuje się go ponadto do: wybielania w procesach produkcji tkanin, papieru i drewna, oczyszczania wody, ścieków, a także jako środek zapobiegający kurczeniu się włókien wełnianych. Krótkotrwałe narażenie inhalacyjne na chlor o dużym stężeniu powoduje podrażnienie błon śluzowych nosa, oczu, gardła oraz kaszel, początkowo suchy, a potem krwioplucie. Może ponadto wystąpić chrypka, bezgłos, trudności w mówieniu, a także nudności i wymioty. W następstwie podrażnienia układu oddechowego występuje ból i ucisk w klatce piersiowej oraz duszność. Szczególnie niebezpieczny dla osób zatrutych chlorem jest obrzęk płuc, który występuje względnie szybko po narażeniu. W wyniku narażenia na chlor o dużym stężeniu może wystąpić natychmiastowy zgon z powodu porażenia ośrodka oddechowego. Narażenie na chlor o stężeniu 2,9 mg/m3 przez 8 h prowadzi do istotnych zmian czynnościowych płuc. W ACGIH zaliczono chlor do grupyA4, tj. czynników nieklasyfikowanych jako kancerogeny dla ludzi. Chlor nie powoduje upośledzenia płodności zwierząt i nie prowadzi do zaburzeń rozwoju prenatalnego. W większości państw normatywy higieniczne chloru wynoszą 1,5 mg/m3 – wartość najwyższego dopuszczalnego stężenia (NDS) i 3 mg/m3 – wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh). Dotychczas obowiązująca w Polsce wartość NDS chloru wynosi 1,5 mg/m3, a wartość NDSCh – 9 mg/m3. Eksperci ze SCOEL ustalili dopuszczalną wartość chwilową chloru równą 1,5 mg/m3. Zespół Ekspertów ds. Czynników Chemicznych Międzyresortowej Komisji ds. NDS i NDN Czynników Szkodliwych dla Zdrowia w Środowisku Pracy przyjął wartość NDS równą 0,7 mg/m3 i wartość NDSCh równą 1,5 mg/m3 oraz zaproponował oznakowanie normatywu literą „I” oznaczającą substancję o działaniu drażniącym.
EN
Under normal conditions of temperature and pressure chlorine is greenish gas. Chlorine reacts with most organic and inorganic compounds. The major man-made source of chlorine is the electrolysis of chlorine salts. Chlorine is use as an oxidizing or a chlorinating agent in chemical processes, and as a disinfectant or bleaching agent. CL50 for rats and mice is 850 and 397 mg/m3 respectively after an inhalation of 1 h. Effects of chronic low-level chlorine human exposure are similar to those concerning the sequel of acute inhalation. Chlorine gas is a respiratory irritant in humans and animals. Accidental exposure of humans to high concentrations of chlorine for short periods can result in bronchoconstriction, cough, dyspnea and respiratory tract ulceration, and hemorrhage. Carcinogenic classification – IARC, group 3-not classifiable as to carcinogenicity to humans; ACGIH – A4 – not classifiable as a human carcinogen. ACGIH recommended for occupational exposure to chlorine TWA 1.5 mg/m3, STEL 2.9 mg/m3. The SCOEL proposed as a STEL 1.5 mg/m3. The Expert Group recommended a TWA 0.7 mg/m3, STEL 1.5 mg/m3 and notation “I” (irritant agent).
7
Content available Morfolina
PL
Morfolina jest bezbarwną, higroskopijną cieczą o zapachu podobnym do amoniaku, która ma wszechstronne zastosowanie w wielu gałęziach przemysłu. Jest wykorzystywana do produkcji gumy, jako czynnik antykorozyjny i katalizator, do produkcji wosków i past oraz wybielaczy optycznych, środków farmaceutycznych, związków bakteriobójczych, fungicydów i herbicydów, a także do produkcji żywności. Morfolina może się wchłaniać do organizmu drogą inhalacyjną, pokarmową oraz przez skórę. Szacuje się, że w Polsce kilkaset pracowników jest potencjalnie narażonych na ten związek. U ludzi narażenie na morfolinę powoduje zaczerwienienie oczu, ich ból i często nawet poparzenia. Kilkugodzinne narażenie na pary morfoliny o małym stężeniu może powodować zamglony, niebieski bądź szary obraz i obraz halo wokół obserwowanych źródeł światła, tzw. „glaucopsia”, spowodowany przez przejściowy obrzęk rogówki. Opisywane zaburzenia widzenia znikają po 3 ÷ 6 h po ustaniu narażenia. Przypadkowe spożycie morfo liny powoduje: kaszel, ból brzucha, wymioty, biegunkę, mdłości, wstrząs lub zapaść. Morfolina jest wydalana z organizmu z moczem niemal w całości w formie niezmetabolizowanej, ale również może ulegać N-metylacji, a następnie N-oksydacji. W kilku badaniach metabolizmu pochodnych morfoliny u szczurów obserwowano także produkty rozszczepienia pierścienia. W obecności azotanów(III) – wodnego roztwóru lub tlenków azotu – morfolina może przekształcać się do N-nitrozomorfoliny (NMOR), co stwierdzono w żołądkach szczurów karmionych dietą z zawartością morfoliny i azotanu(III) sodu. N-nitrozomorfolina może powstawać w warunkach in vivo u ludzi i jest to związek kancerogenny dla myszy, szczurów, chomików i różnych gatunków ryb, a wg klasyfikacji IARC należy do grupy czynników przypuszczalnie rakotwórczych dla ludzi (grupa 2B). Medialne stężenie letalne (LC50) morfoliny dla myszy zawiera się w zakresie 4900 ÷ 6900 mg/m3, a dla szczurów wynosi 7800 mg/m3. Natomiast medialna dawka śmiertelna tego związku po podaniu szczurom do żołądka wynosi 1000 ÷ 1900 mg/kg masy ciała, po podaniu na skórę królików – około 500 mg/kg masy ciała, po podaniu do jamy otrzewnej szczurów – 100 ÷ 400 mg/kg, a do jamy otrzewnej myszy – 400 mg/kg masy ciała. Toksyczność ostra morfoliny wiąże się z krwotokami żołądkowo-jelitowymi i biegunką po narażeniu drogą dożołądkową, podrażnieniem spojówek, występowaniem krwotoków z nosa i z pyska oraz z zapaleniem płuc przy narażeniu inhalacyjnym. Morfolina wykazuje właściwości drażniące na skórę, oczy i układ oddechowy u ludzi i zwierząt laboratoryjnych. Podprzewlekłe narażenie inhalacyjne szczurów na morfolinę o małym stężenu (36 ÷ 90 mg/m3) nie spowodowało istotnych zmian lub tylko niewielkie podrażnienie wokół nozdrzy i pyska. Natomiast narażenie na działanie morfoliny o dużym stężenu (3620 ÷ 18100 mg/m3) przez 9 dni spowodowało krwawienie z oczu, nosa i pyska oraz martwicę komórek nabłonkowych nosa. Uszkodzenia błony śluzowej nosa i pyska oraz zapalenie płuc obserwowano także u szczurów narażonych na związek o stężeniu 900 mg/m3 przez 13 tygodni. Podawanie dożołądkowo morfoliny w dawce 160 mg/kg masy ciała/dzień przez 30 dni spowodowało martwicę wątroby, błony śluzowej nerek i żołądka, natomiast narażenie na morfolinę o stężeniu 800 mg/kg masy ciała – rozległą martwicę wątroby, nerek i żołądka. W testach wykonanych w warunkach in vitro wykazano, że morfolina jest słabym mutagenem. Nie wykazano kancerogennego działania morfoliny u zwierząt laboratoryjnych. Nie ma danych na temat kancerogennego działania morfoliny u ludzi. W International Agency for Research on Cancer (IARC) uznano, że morfolina jest nieklasyfikowana jako kancerogen u zwierząt i ludzi (grupa 3), natomiast w American Conference of Governmental Industrial Hygienists (ACGIH) zaklasyfikowano związek do grupy A4, tj. związek niesklasyfikowany jako kancerogen dla ludzi. Nie ma danych w dostępnym piśmiennictwie na temat działania embriotoksycznego, teratogennego i wpływu morfoliny na rozrodczość. W Polsce wartość najwyższego dopuszczalnego stężenia (NDS) morfoliny w powietrzu środowiska pracy wynosiła dotąd 20 mg/m3, a wartość NDSCh – 100 mg/m3. W piśmiennictwie nie ma danych na temat osób pracujących w warunkach przekroczenia wartości NDS w Polsce. Za podstawę ustalenia wartości NDS i NDSCh morfo liny przyjęto wyniki badań przeprowadzonych na szczurach rasy Sprague-Dawley narażanych na morfolinę o stężeniach: 36; 180 lub 540 mg/m3 przez 104 tygodnie. Na podstawie wyników badań stężenie 180 mg/m3 morfoliny przyjęto za wartość LOAEL związku. Wielkość tego stężenia świadczy o drażniącym działaniu morfo liny na oko i błonę śluzową nosa szczurów. Biorąc pod uwagę powyższe wyniki, a także stosując łączny współczynnik niepewności równy 4, wyliczono wartość NDS morfoliny równą 45 mg/m3. Ze względu jednak na to, że wartości normatywów higienicznych morfoliny obowiązujące w państwach Unii Europejskiej są mniejsze i wynoszą 36 mg/m3 OEL i 72 mg/m3 wartość krótkoterminowa, zaproponowano ustalenie w Polsce takich samych wartości, jakie obowiązują w państwach UE. Ze względu na wchłanianie morfoliny przez skórę i jej właściwości żrące, normatyw ten należy oznaczyć literami: „Sk” – substancja wchłania się przez skórę oraz „C” – substancja o działaniu żrącym.
EN
Morpholine is a colourless, oily, hygroscopic, volatile liquid with a characteristic amine odor. Morpholine has many derivatives including the production of insecticides and herbicides, in rubber industry, component of waxes and polishec etc., as a boiler chemical and as corrosion inhibitor. It is also used asa fungicide in fruit waxes. Morpholine is well absorbed after orally and skin administration and inhalation. This substance can strongly irritates skin and mucous membranes of the eye and respiratory and digestive tract. In the investigated rodents, injected or inhaled morpholine was found at highest level in the kidney or in muscle, and this substance was excreted unchanged in urine. There is strong evidence tha morpholine can be nitrosated to the carcinogenic N-nitrosomorpholine (NMOR) by rection outside or within the human body. Short-term animal studies shown haemorrhage and diarrhoea in the digestive tract after morpholine oral administration and irritation, haemorrhage in respiratory tract after inhalation. Long-term animal studies have shown liver, kidney, and stomach nectrosis. There are no data on reproductive toxicity, embryotoxicity and teratogenicity. No data are available on short- and long-term morpholine exposure in humans. The recommend maximum exposure limit TLV (MAC) value were sustained at 36 mg/m3 and short-term exposure limit (STEL) at 72 mg/m3, on the basis of the Sprague-Dawley rats long-term inhalation study. The The Expert Goup also suggested additional notations: „Sk” (substance absorbed through the skin), „C” (corrosive subsatnce). Monitoring of ambient nitrous oxides is highly recommended, because of the potential for nitrosation of morpholine to form NMOR under some workplace conditions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.