Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 21

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  SRTM
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The digital elevation model (DEM) is one of the most critical sources of terrain elevations, which are essential in various geoscience applications. Most of these applications need precise elevations, which are available at a high cost. Thus, sources like the Shuttle Radar Topography Mission (SRTM) DEM are frequently accessible to all users but with low accuracy. Consequently, many studies have tried to improve the accuracy of DEMs acquired from these free sources. Importantly, using the SRTM DEM is not recommended for an area that partly contains high-accuracy data. Thus, there is a need for a merging technique to produce a merged DEM of the whole area with improved accuracy. In recent years, advancements in geographic information systems (GIS) have improved data analysis by providing tools for applying merging techniques (like the minimum, maximum, last, first, mean, and blend (conventional methods)) to improve DEMs. In this article, DEM merging methods based on artificial neural network (ANN) and interpolation techniques are proposed. The methods are compared with other existing methods in commercial GIS software. The kriging, inverse distance weighted (IDW), and spline interpolation methods were considered for this investigation. The essential step for achieving the merging stage is the correction surface generation, which is used for modifying the SRTM DEM. Moreover, two cases were taken into consideration, i.e., the zeros border and the H border. The findings show that the proposed DEM merging methods (PDMMs) improved the accuracy of the SRTM DEM more than the conventional methods (CDMMs). The findings further show that the PDMMs of the H border achieved higher accuracy than the PDMMs of the zeros border, while kriging outperformed the other interpolation methods in both cases. The ANN outperformed all methods with the highest accuracy. Its improvements in the zeros and H border respectively reached 22.38% and 75.73% in elevation, 34.67% and 54.83% in the slope, and 40.28% and 52.22% in the aspect. Therefore, this approach would be cost-effective, especially in critical engineering projects.
EN
One of the most popular sources of elevation data covering the most of the Earth's surface with spatial resolution of up to 30 m (1 angular second to be exact) is the SRTM model. This terrain model has two main disadvantages: it covers the area of the Earth between the parallels 54°S and 60°N only, and in some mountainous and desert areas there are gaps (voids) in the data. Additionally, it may not be suitable for more detailed visualization and analysis due to their limited accuracy. Therefore, the paper attempts to find an alternative source of elevation data. One of them may be archival maps, on which the terrain is presented by means of contours. By vectorization of such lines and adding respective attributes they can serve as a base for building digital terrain models. Examples of such maps are maps created in the period before World War II by Polish Military Geographical Institute (WIG). Although newer topographic maps or even more accurate spatial databases exist, it is assumed that as official materials WIG maps were not covered by copyright, so they are in public domain, just like SRTM. Conducted research and literature studies have shown that the issue of using contours extracted from archival topographic maps is not unambiguous. The lack of reproducibility in the results obtained does not allow making clear recommendations on the feasibility of using archival maps. Using a contour drawing as the sole source of elevation data, without any control, should be considered risky. On the other hand, it seems possible to use them as supplementary and perhaps refining material, but only in places where consistency with other data can be observed.
EN
Digital elevation models (DEM), including the Shuttle Radar Topography Mission (SRTM), are used in many branches of geoscience as an ultimate dataset representing our planet’s surface, making it possible to investigate processes that are shaping our world. The SRTM model exhibits elevation bias or systematic error over forests and vegetated areas due to the microwaves’ peculiar properties that penetrate the vegetation layer to a certain depth. Numerous investigations identified that the penetration depth depends on the forest density and height. In this contribution, two methods are proposed to remove the impact of the vegetation impenetrability effect. The first method is founded on the multiple regression of two forest characteristics, namely forest height and forest density. The second method uses a lookup table approach. The lookup table and the multiple regression explanatory variables are taken from the freely available datasets, including the forest density data (MODIS_VCF) and global tree height map (GTHM). An important role in this research is played by the Ice, Clouds, and Land Elevation Satellite (ICESat) data. The accuracy tests indicate that the first method eliminates approximately 68% of the elevation bias, while the second method appears to be more effective, leading to almost complete removal of the vegetation bias from the SRTM data. The methods are fine-tuned to the local coniferous forests in Poland. Additional studies are required to finetune the methods for the leaf-off state of deciduous forests. However, a new set of parameters for both methods can be quickly developed for different locations and forest types. Both methods’ functionality and effectiveness can be improved once more accurate forest tree height and vegetation density data become available. These methods are universal in mitigating the vegetation bias from the Synthetic Aperture Radar Interferometry (InSAR) derived model and photogrammetric models.
EN
The aim of this project was to estimate the accuracy of the Shuttle Radar Topography Mission (SRTM) digital elevation model over the territory of the Republic of Poland, using the centerline cross-sections of runways as reference data. This method is known as the runway method. The statistical investigations were carried out based on the height differences between the SRTM and the reference data. For this purpose, 22 sections of the SRTM with 1 arcsecond of spatial resolution (SRTM-1″) and profiles of 30 runways were used. Data processing was performed using ArcGIS (Esri) software package. The study found that the SRTM-1″ had a –3.65 m magnitude elevation bias. The standard deviation and root-mean-square error (RMSE) of the elevation differences between the SRTM and the reference data reached the level of 1.88 m and 4.14 m, respectively. The obtained results are consistent with the investigations of the SRTM-3″ model conducted by other authors for the area of Poland and other countries. Overall, it can be confirmed that the SRTM-3″ model performs significantly better over flat areas than the SRTM-1″ in terms of RMSE of the vertical accuracy.
PL
Numeryczne modele terenu są bazą wiedzy o wysokości terenu. W naukach geodezyjnych kluczowym zagadnieniem jest dokładność modeli terenowych. Jednym z głównych źródeł informacji o rzeźbie terenu są dane z Radarowej Misji Topograficznej Promu Kosmicznego SRTM (Shuttle Radar Topography Mission). Dostarczają one informacje na dwóch poziomach szczegółowości: rozdzielczość 1˝ (SRTM 1) oraz rozdzielczość 3˝ (SRTM 3). Badania zostały przeprowadzone w celu określenia dokładności modelu STRM pozyskanego w paśmie X dla obszaru Polski (dostępnego nieodpłatnie od września 2014r). Ocenę przeprowadzono w oparciu o porównanie wysokości punktów pomierzonych techniką GPS RTK oraz pomierzonych na modelu, przetransformowanych do wspólnego układu wysokościowego. Dokonano analizy statystycznej wyników pomiarów. Miarą wstępnej oceny dokładności były błędy średnie obliczone na podstawie różnic pomiędzy wysokościami punktów profili mierzonymi w terenie i na modelu. Z badań wynika, że model SRTM 1 na obszarze Polski jest obarczony błędem systematycznym na terenach nizinnych. Po uwzględnieniu błędu systematycznego, analiza dokładności modelu SRTM 1 dla wybranych fragmentów Polski wykazała błędy RMS na poziomie ±0,9 m dla terenów nizinnych oraz ±8,4 m dla terenów górzystych. Modele SRTM 1 i SRTM 3 cechują się zbliżoną dokładnością na terenach równinnych. Natomiast na terenach górzystych model SRTM 1 wykazuje wyższą dokładność niż SRTM 3.
EN
Digital terrain models are the basis of knowledge about altitude. An accuracy of terrain models is a key issue for sciences of geodesy. One of the main sources of the surface height information is data from Shuttle Radar Topography Mission. They provide information on the two levels of detail: the resolution 1˝ (SRTM 1) and the resolution of 3˝ (SRTM 3). Research work was performed to assess the accuracy of the SRTM X-band DEM in Poland (which is available for free since September 2014).Analysis was based on comparison the reference terrain profiles measured by GPS techniques and height measured of the model, in the same reference system. For results of measurement was performed statistical analysis. The measure of a preliminary assessment of the accuracy were mean errors. They were calculated based on the difference between the heights of points of profiles measured in the terrain and on the model. Research showed a systematic shift between SRTM 1 data on Polish territory and reference profiles. The value of this errors were different for other regions. The RMS errors (without a systematic shift) was found to be 0,9 m for flat regions and 8,4 m for mountain regions of Poland. STRM 1 and STRM 3 terrains models were characterized by similar accuracy on the flat area, but in the mountainous areas SRTM 1 model shows higher accuracy than SRTM 3.
6
Content available Numeryczne dane wysokościowe misji TanDEM-X
PL
Zapoczątkowana w 2010 roku misja TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) jest pierwszą satelitarną misją radarową, w ramach której zostały pozyskane dane interferometryczne w trybie bistatic InSARstripmap przez dwa bliźniacze satelity TerraSAR-X (TSX) oraz TanDEM-X (TDX) tworzące formację Helix. Realizacja tej konfiguracji ma na celu budowę numerycznego modelu pokrycia terenu (NMPT) o zasięgu globalnym w standardzie HRTI-3 (High Resolution Terrain Information). W artykule przedstawiono opis i specyfikację podstawowych produktów misji, jakimi są m.in. numeryczne modele pokrycia terenu, a także dodatkowych komponentów w postaci warstw informacyjnych i masek. Opisane zostało również zastosowanie techniki interferometrii radarowej w procesie budowy numerycznego modelu pokrycia terenu w postaci cyfrowej.
EN
Started in 2010 TanDEM-X mission (TerraSAR-X add-on for Digital Elevation Measurement) is the first space borne radar interferometer mission that acquires interferometric data in bistatic InSARstripmap mode with two spacecrafts TerraSAR-X (TSX) and TanDEM-X (TDX) flying in Helix formation. That configuration enables generation of a global digital elevation model compatible with the HRTI-3 standard. This paper presents an overview and specification of primary products of the TanDEM-X mission, i.e. digital elevation models and additional components such as information layers and masks. Moreover, the use of radar interferometry techniques for generation of the digital elevation model (DEM) and applications of InSARare discribed.
7
Content available Integracja satelitarnych modeli wysokościowych
PL
W artykule zaprezentowano metodę integracji danych wysokościowych z interferometrycznej misji satelitarnej SRTM (model SRTM-C, rozdzielczość 3", tj. około 90 m) oraz stereoskopowych pomiarów scen satelitarnych ASTER, pozyskanych w kanale bliskiej podczerwieni, do opracowania Numerycznego Modelu Pokrycia Terenu (NMPT) o rozdzielczości przestrzennej 1". Model ASTER charakteryzuje się większą rozdzielczością (1", tj. około 30 m), ale może wykazywać lokalne błędy o charakterze systematycznym, spowodowane głównie błędami dopasowania obrazów w obszarach o regularnej strukturze pól uprawnych. Opracowana metoda zakłada uszczegółowienie modelu interferometrycznego z wykorzystaniem modelu ASTER. Bazuje na modelu różnicowym obu NMPT poddanym działaniu filtra uśredniającego ważonego, co zachowuje w nim ewentualne błędy systematyczne. Przefiltrowany model różnicowy posłużył do poprawy modelu ASTER. Zaproponowaną metodę przetestowano na fragmencie obszaru centralnej Polski o powierzchni 31 tys. km2. Ocenę wizualną i ilościową otrzymanego zintegrowanego modelu względem danych źródłowych przeprowadzono dla trzech typów pokrycia terenu z wykorzystaniem profili terenowych oraz NMPT pozyskanego w ramach projektu ISOK. Wyboru obszarów o określonym typie pokrycia dokonano z wykorzystaniem bazy CORINE Land Cover. Miarą oceny dokładności modeli były błędy średnie liczone na podstawie różnic wysokości punktów interpolowanych z modelu oraz odpowiadających im punktów kontrolnych profili terenowych, pomierzonych techniką GPS, a także odchylenie standardowe różnic wysokości pomiędzy modelem referencyjnym ISOK a analizowanymi modelami. Ocena wizualna przeprowadzona została na fragmencie wydzielonym z całego obszaru opracowania. W wyniku zastosowania opracowanej metody otrzymany NMPT charakteryzuje się wyższą szczegółowością w porównaniu z modelem SRTM-C. Skompensowane zostały w nim również lokalne błędy systematyczne charakterystyczne dla modelu ASTER.
EN
The article presents the method of developing a 30-m spatial resolution DSM based on integration of height data from InSAR SRTM mission and the stereoscopic measurements of ASTER satellite images. The method involves the use of 30-m ASTER model for refinement of a 90-m interferometrie SRTM model. ASTER model has a higher resolution, but it can contain local systematic errors (due to incorrect image matching in areas of the regular pattern of agricultural parcels). The differential model is generated and next smoothed with weighted averaging filter. Such a model is used to correct the ASTER DSM. The method was tested in the area of 31,000 square kilometers located in central Poland. A visual and precise evaluation of the output model relative to source data was performed with the use of terrain GPS profiles and the detailed DSM based on airborne laser scanning (ALS) data for three types of land cover. The accuracy of models was assessed by RMSE calculated from a difference between point heights interpolated from the model and the same height points taken from terrain GPS profiles. Also the standard deviation of height difference between analyzed and ALS DSM was analyzed. In the new integrated DSM, more details were noticed compared to the SRTM DSM. The height errors typical for ASTER model were compensated. The vertical accuracy of the developed DSM is close to SRTM data.
EN
The article compares the accuracy of two digital elevation models Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model. Models were assessed in the context of possibility of their usage in hydrological modeling in the areas of low drop. The object of analysis is located in the agglomeration of Poznań. Detailed study sites were the catchment area of Junikowski Stream and catchment area of Tributary from Dopiewiec. The study used data from two free DEMs: SRTM, ASTER and as a reference, DEM model generated from the contour lines and elevation points from Vector Map Level 2 (VMAP L2). Analyses were performed using Free Open Source Software, Quantum GIS ver. Wroclaw and GRASS 1.7.4 ver. 6.4.2. Data analysis were also performed in spreadsheets in Microsoft Office Excel 2007. Hydrological analysis were conducted in r.watershed GRASS module. In the second part of the paper, for the comparative analysis, data from Raster Hydrographical Map of Poland was adopted. Research showed that the average difference occurring between the analyzed models are not significant, however, a large number of artifacts in the models can influence on the results of the hydrological analysis. It has been calculated that the SRTM model is more accurate than the ASTER data even though the ASTER model input resolution is higher. The results revealed that the SRTM is closer to the reference model. It should also be noted that used reference DEM, may contain errors. In the small catchments with low drop, catchment boundaries and river networks generated from the DEMs may contain errors affecting the results of the hydrological modeling. Using available and free DEMs (SRTM and ASTER) to generate catchment boundaries and streams networks, the results must be verified basing on field measurements or it has to be made on the basis of greater resolution data, e.g. from Airborne Laser Scanning LIDAR (Light Detection and Ranging). Due to the errors in the tested models it is not recommended to use data, especially from the ASTER, for large-scale studies in the areas of small drop. SRTM and ASTER DEMs, however are a valuable material for analysis in small and medium scales. Data from the analyzed models is a valuable source of information about the terrain and can be successfully used for the geomorphological and landscape analysis.
PL
W artykule omówiono analizę danych i narzędzi pod kątem opracowania wspólnej wizualizacji obrazu otrzymanego za pomocą skanera MODIS i numerycznego modelu terenu SRTM oraz kolejne wersje procedury ich wspólnego przedstawienia. W drugiej części, która ukaże się w następnym numerze przedstawiono wyniki w postaci map opracowanych na tej podstawie: Polski w skali 1:1 000 000, Europy Środkowej w skali 1:2 000 000 i Europy w skali 1:10 000 000.
EN
In the years 1999-2000 government agencies of the United States created two sets of geographical data of global range, which were soon put on the Internet. They were images of the Earth's surface in real colors in the resolution of 500 m registered by the MODIS scanner and altitude data (DTM) in the resolution of 100 m registered as part of the SRTM project. The Institute of Geodesy and Cartography in Warsaw decided to analyze the data. It has been assessed that the materials are of great informative value, ideally suited for obtaining an image of the area for the needs of a modern small scale referential map. In order for such a map to be created, the task was to find a way of common visualization of both types of data. The first part of the article is devoted to a discussion of data analysis and of theoretical assumptions of creating a visualization of satellite image and model of terrain as well as to the discussion of successive versions of procedure for their common presentation.
10
Content available Ocena dokładności modelu SRTM-X na obszarze polski
PL
Celem niniejszego referatu jest ocena dokładności Numerycznego Modelu Pokrycia Terenu dla obszaru Polski pozyskanego z Radarowej Misji Topograficznej Promu Kosmicznego SRTM (Shuttle Radar Topography Mission) w paśmie spektralnym X. Ocenę dokładności przeprowadzono na podstawie precyzyjnych danych referencyjnych, którymi były profile terenowe pomierzone techniką GPS. Zakres badań obejmował swym zasięgiem obszary testowe, reprezentujące różne formy ukształtowania terenu, położone w granicach administracyjnych 14 województw. Obszary testowe położone były na obszarach odkrytych i nie obejmowały terenów zurbanizowanych oraz kompleksów leśnych. Miarą oceny dokładności modelu SRTM były błędy średnie liczone na podstawie różnic wysokości pomiędzy punktami profili terenowych oraz odpowiadającymi im wyinterpolowanymi punktami modelu SRTM. Niezbędne analizy przeprowadzono w środowisku oprogramowania SCOP++ firmy Inpho. Stwierdzono, że dokładność bezwzględna modelu SRTM na obszarze Polski wynosi mH = 3.6 m dla terenów równinnych oraz mH = 4.1 m dla terenów falistych i pagórkowatych. Stwierdzono również, że dokładność interferometrycznego pomiaru wysokości punktów węzłowych siatki modelu SRTM degradowana jest w procesie interpolacji wysokości punktów poza węzłowych, zaś stopień tej degradacji jest funkcją deniwelacji rzeźby terenu oraz gęstości oczka siatki. Ocena statystyczna dokładności pomiaru SRTM wykazała, że pomiary interferometryczne obarczone są poza błędami grubymi błędem systematycznym. Po wyeliminowaniu tych błędów okazało się, że dokładność bezwzględna modelu SRTM na obszarze Polski kształtuje się na poziomie mH = 1.8 m dla terenów falistych i pagórkowatych oraz mH = 1.0 m dla terenów równinnych.
EN
The mission of Endeavour spacecraft well known as SRTM (Shuttle Radar Topography Mission) eleven years ended ago. The obtainment the radar data set by only just eleven days was the aim of mission. Based on this data the DEM for over 80 percent of the surface of Earth has been generated. The SRTM for all potential users is available free. For Polish area this data are accessible on level DTED-2 in dt2 format with resolution 30 by 30 meters. Acquisition of DEM with accuracy CE (90) better then 16 meters was the obtainment of the program of the SRTM mission. The accuracy of the SRTM terrain model on Eurasia area after calibration of the measuring system was CE (90) = 6.2 m. In order to determine the absolute accuracy of SRMT model on Polish area the research work has been performed on the basis of reference terrain profiles measured by GPS technique. The flat and hilly terrains were examined in administrative borders of fourteen provinces. It was not reference data for mountainous terrains. For the analysis of accuracy of the SRTM model terrain have been measured. The accuracy of SRTM model presented by RMSE was computed on the basic of the height differences between profiles and models homolog points. The analyses have been done in SCOP++ Inpho software. It was affirmed that absolute accuracy of SRTM-X elevation model on Polish area is 3.6 m for flat and 4.1 m for hilly region. It was affirmed too, that this accuracy is depend on finally grid interpolation process. Results of the process are function of terrain slopes and density of grid points. Statistic assessment of accuracy of SRTM model showed that source SRTM-X data includes gross errors as well as ingredient systematic linear error component (bias). This component is the result of insufficient calibration of the measuring system (interferometer) relation to scanned ground. After gross errors and bias elimination the absolute accuracy of SRTM-X model on Polish area increases to 1.0 m for flat and 1.8 m for hilly area.
EN
The first part of the article presents the quality analysis following the most popular world standards used for the description of terrain / sea bottom shape: DTED - Digital Terrain Elevation Data, used by NATO, SRTM model - Shuttle Radar Topography Mission, worked out within the confines of the international mission of the space shuttle Endeavour, DBDB-V - Digital Bathymetric Data Base - Variable Resolution, used for the description of sea and ocean bottoms, NMB - Network Model Bathymetry, as one of the AML - Additional Military Layers for WECDIS - Warship Electronic Chart Display and Information Systems has been shown. The distortion distribution of projected areas shape in a matrix model based on ellipsoidal trapezoids and proposal of new model based on ellipsoidal squares have been presented in the main and final section of the article.
PL
Pierwsza część artukułu przedstawia analizę jakościową najpopularniejszych światowych standardów służących do opisu kształtu powierzchni terenu / dna morskiego: DTED (Digital Terrain Elevation Data), stosowanego w NATO; modelu SRTM (Shuttle Radar Topography Mission), opracowanego w ramach międzynarodowej misji promu kosmicznego Endeavour; DBDB-V (Digital Bathymetric Data Base - Variable Resolution), stosowanego do opisu kształtu dna oceanów i mórz; NMB (Network Model Batymetry), stanowiącego jedną z Dodatkowych Warstw Wojskowych (Additional Military Layers) dla systemów WECDIS (Warship Electronic Chart Display and Information System). W głównej i końcowej części zaprezentowano rozkłady zniekształceń odwzorowawczych kształtu powierzchni w modelu macierzowym bazującym na trapezach elipsoidalnych i propozycję nowego modelu bazującego na kwadratach elipsoidalnych.
EN
Global climate change occurs naturally and periodically and is often attributed to continental drift, variations in the earth's axis and orbit, variations in solar energy output and the frequency of volcanic activity. However, over the past few decades human activities have significantly altered the atmospheric composition, causing a climate change not previously experienced (IPCC, 2001). The first report of the Intergovernmental Panel on Climate Change (IPCC) assessed projections which suggested global average temperature increases between 0.15 and 0.3°C per decade from 1990 to 2005. The mountain glaciers and snow cover on average have declined in both hemispheres and the maximum areal extent of seasonally frozen ground has decreased about by 7% in the Northern Hemisphere since 1900, with decreases in spring of up to 15% (IPCC, 2007). Kyrgyzstan is one of the extensively glaciated regions in the world . A variety of available sources were used in this study in order to detect changes to the Petrova Glacier, which is one of the largest glaciers of the Ak-Shyjrak glacierized Massif in Central Tien-Shan (Kyrgyzstan). Glacier mass change is difficult to measure from the multispectral remote sensing data of Landsat, therefore glacier shrinkage was described as a loss of glacier area. The objective of this study is to characterize changes across a period of more than 60 years, from 1943 to 2006. The total area of glacier in previous years was calculated from the available cartographical data and its recent state from Landsat satellite images. A new policy of free availability of the Landsat data series allows for wider opportunities for monitoring glaciers in remote areas. The extraction of relevant parameters of glaciers from SRTM data also plays a significant role, especially in mountain areas
PL
Lodowce gór Tien-Szan są odnawialnym źródłem świeżej wody, z której korzystają miliony ludzi w Centralnej Azji. Cofanie się lodowca może być jednym z czynników globalnych zmian klimatycznych. Zgodnie z ostatnim raportem IPCC (2007) całkowity wzrost temperatury od lat 1850-1899 do lat 2001-2005 wyniósł 0.76°C. Oszacowano, że wzrost średniej temperatury o 1°C w stosunku do roku 1850 może spowodować zmniejszenie się powierzchni lodowców górskich aż o 40% i o ponad 50% zmniejszenie ich objętości. W niniejszej pracy podjęto próbę oszacowania wpływu globalnego ocieplenia na lodowiec Pietrowej, jeden z największych lodowców masywu Ak-Szijrak (Kirgistan), z wykorzystaniem analizy multispektralnych danych satelitarnych oraz dostępnych danych kartograficznych. Celem badania jest scharakteryzowanie rozmieszczenia przestrzennego Lodowca Pietrowej i jego zmian w okresie ponad 60 lat, od 1943 do 2006 roku. Zmiana lodowca bądź masy śniegowej jest trudna do zmierzenia przy użyciu multispektralnych danych satelitarnych Landsat, zatem zmniejszanie się lodowca zostało opisane jako ubytek powierzchni lodowca, który jest funkcją odległości przebytej przez cofający się brzeg lodowca. Do określenia całkowitej powierzchni lodowców zastosowano techniki przetwarzanie multispektralnych obrazów Landsat TM.
PL
W artykule przedstawiono analizy morfometryczne obszaru Polski. Wykonano mapy hipsometryczną, deniwelacji, spadków, kierunków na­chyleń i odchyleń standardowych. W badaniach wykorzystano wysokościowe dane satelitarne SRTM-3 o rozdzielczości 3x3 (60-65x90 m), które do celów badań zgeneralizowano do siatki 125x125 m, a następnie do heksagonów o powierzchni 0,14 i 3 km2. Dane te, ze względu na szczegółowość, powinny być bardzo przydatne w analizach morfometrycznych, w tym na potrzeby praktyki.
EN
The article discusses the results of research on the differentiation of land relief in Poland based on altitude data from SRTM {Shuttle Radar Topography Mission), which is released in the resolution of 3x3 (for Poland's latitude it is 60-65x90 m). Calculations were based on the data in lower resolution done on the grid of 125x125 m. The article presents classic morphometric analyses, a hypsometric map (fig. 2) and maps of differences of relative altitudes (fig. 4), slope angles (fig. 5) and slope directions. Percentage of area in high a.s.l. altitudes and slopes by region were also calculated (tabl. 1 and 2) The author suggests a new method of presentation of differentiation of surface relief through the analysis of variation of standard relative altitude in regular geometrical figures (fig. 7). Maps of Poland in 1:5,000,000 prepared for the article were generalized using a network of hexagons of 0,14 and 3 km2 each (respectively 2,300,000 and 104,200 cells for the area of Poland), within which particular variables were averaged. The research showed high usefulness of SRTli data, particularly in scales below 1:100,000. This data is very detailed and can be applied for various morphometric analyses, which are currently revived becat of this, particularly in geomorphology, hydrology and pedology. Application of computer techniques radio reduces the time needed for tedious calculations. In the case of classic morphometric analyses high hopes are raised by data mining techniques and cluster analysis in general, which facilitate discovery of often difficult to perceive, nevertheless crucial regularities the morphometric differentiation of the Earth's surface. This can help to explain morphogenetic and landscape-forming processes. The last section of the article discusses the possibilities of application of detailed altitude data beyond the traditional range of Earth sciences (geology, physical geography), i.e. in socio-economic study and spatial economy. For more advanced application it is however necessary to eliminate the influence of some land cover forms, forests in particular. It is particularly important in lowland and flatland areas.
14
Content available remote SRTM - technologia obrazowania powierzchni Ziemi
PL
W artykule zawarto zwięzły opis celu misji SRTM (Shuttle Radar Topology Mission) oraz zasady działania urządzeń wykorzystanych w trakcie misji. Wynikiem obserwacji jest globalny model ukształtowania powierzchni Ziemi z dużą rozdzielczością. Dodatkowo dane upublicznione zostały w sieci internet i może z nich korzystać każdy. Krótko opisane zostały także przykładowe możliwości związane z wykorzystaniem danych SRTM oraz podstawowe parametry charakteryzujące dane topograficzne pozyskane w trakcie trwania misji SRTM.
EN
In this article was presented a short overview of Shuttle Radar Topology Mission (SRTM) and an overview of devices used in this mission. A high resolution global terrain model was an effect of this observation. SRTM data are published in the internet and everyone can use this data. Abilities of using SRTM data and basic data characteristic was also described in this article.
EN
Geological sciences have recently utilized a wide range of numerical methods to collect, analyze, visualize and interpret geospatial datasets both at industrial and academic level. Investigation of various elements of surface and subsurface structures using DEM (Digital Elevation Model), DTM (Digital Terrain Model) and SRTM (Shuttle Radar Topography Mission) data provides unique opportunities for depiction of geology and geomorphology in a form of three-dimensional maps. These digital maps should potentially replace traditional topographic maps in the nearest future. New numerical systems have enhanced significantly time efficiency of producing maps and related databases. Advance in detailed work on the high resolution maps and digital elevation computer-supported models is essential for precise and objective interpretation of large datasets. Available visualization systems produce sets of images and animations showing geospatial structures, processes and their relations in a multi-dimensional form commonly presented as stereo-pairs for presentation in an immersive environment or as anaglyphs. Utilization of web-accessible datasets of DTED level 0 and 1 and LandSat images is a new advantage in small and regional scale mapping.
EN
Modelling quasi geoid with centimetre accuracy requires taking into account irregularities of topography in the vicinity of a gravity station, i.e. the terrain correction to surveyed gravity. Accuracy of determination of the terrain correction affects quality of quasigeoid model determined. It depends on the resolution and accuracy of terrain data that usually is provided in the form of a digital terrain model DTM. Investigations were conducted with the use of the Digital Terrain Elevation Data DTED2 model developed for Poland according to the NATO-STANAG 3809 standard, as well as global models SRTM3 and SRTM30 (The Shuttle Radar Topography Mission). Also height data from the gravity database was considered. The prism method of determination of terrain corrections was applied in majority of numerical tests. Practical method for determining the optimum radius of the integration cap considering roughness of topography as well as required accuracy of terrain corrections was developed. The effect of vertical and horizontal uncertainty of a DTM as well as its resolution on the quality of the terrain corrections was investigated. The terrain corrections obtained using a prism method were also compared with the respective ones calculated using the FFT approach. The usefulness of the available topography data for precise terrain correction computation in Poland was discussed. The results of the investigations were used to determining the strategy of computation of the terrain corrections to point gravity data in the gravity database for Poland. The "2005" terrain correction set calculated for 1 078 046 gravity stations contributes to the increase of precision of gravimetric quasigeoid models developed for Poland.
PL
Przy wyznaczaniu centymetrowej quasigeoidy niezbędne jest uwzględnienie nieregularności topografii występujących wokół stacji grawimetrycznej, czyli wprowadzenie do pomierzonego przyspieszenia siły ciężkości poprawek terenowych. Dokładność obliczania poprawek terenowych ma wpływ na dokładność wyznaczanego modelu quasigeoidy. Zależy ona od dokładności i rozdzielczości danych wysokościowych oraz użytych do wyznaczania poprawek terenowych parametrów. W badaniach przeprowadzonych w ramach niniejszej pracy wykorzystano opracowany przez Zarząd Geografii Wojskowej, według standardu NATO-STANAG 3809, numeryczny model terenu DTED2 (Digital Terrain Elevation Data) dla obszaru Polski oraz modele SRTM3 (The Shuttle Radar Topography Mission) i SRTM30 dla obszaru Polski i obszarów przyległych. Porównano wyniki testowe obliczenia poprawki terenowej uzyskane przy użyciu metody prostopadłościanów i metody wykorzystującej trans formaty Pouriera. Poprawki terenowe obliczano metodą prostopadłościanów polegającą na sumowaniu wpływów nadwyżek lub niedoborów mas pochodzących od graniastosłupów o podstawach prostokątnych na składową pionową przyspieszenia siły ciężkości.. Opracowano praktyczną metodę wyznaczania wymiary obszaru, z jakiego topografia powinna być uwzględniana przy obliczaniu poprawki terenowej. Analizowano również wpływ błędów wysokości, a także błędów położenia punktów modelu na dokładność uzyskiwanych poprawek terenowych. Przedyskutowano użyteczność dostępnych danych dotyczących topografii terenu do obliczania precyzyjnych poprawek terenowych w Polsce. Uzyskane wyniki badań wykorzystano do określenia strategii obliczenia poprawek terenowych dla ponad miliona punktów grawimetrycznych zawartych w bazie danych grawimetrycznej dla Polski. Dzięki obliczonemu dla I 078 046 punktów grawimetrycznych zbiorowi poprawek terenowych możliwe będzie zwiększenie precyzji obliczanych dla obszaru Polski modeli quasigeoidy grawimetrycznej.
PL
Jednym z podstawowych i najbardziej rozpowszechnionych źródeł danych o ukształtowaniu terenu są numeryczne modele terenu (NMT). Numeryczne modele terenu są jedynie modelami rzeczywistości, a nie jej idealnym odwzorowaniem. Nieodłącznym elementem modeli terenu, podobnie jak wszystkich innych zbiorów danych przestrzennych są błędy, którymi obarczone są te dane. Istotny wpływ na dokładność NMT ma metoda pozyskiwania danych wysokościowych. Do najpowszechniej wykorzystywanych należą: metoda fotogrametryczna, poziomicowa, laserowa (LiDAR) oraz interferometryczna (InSAR). Każda z nich w odmienny sposób przekształca dane, wykorzystując różne algorytmy. Dodatkowym źródłem błędów w modelach terenu wykorzystujących zapis rastrowy jest wielkość najmniejszego pola, dla którego zapisana została określona wartość wysokości. Rozdzielczość modeli rastrowych jest jedną z głównych cech determinujących dokładność odwzorowania terenu. Celem niniejszej pracy było dokonanie oceny dokładności wybranych modeli terenu pod kątem ich przydatności w badaniach środowiska geograficznego. Analiza ta posłużyła do wykazania wpływu rozdzielczości i metod pozyskiwania danych do NMT na dokładność samego modelu terenu, jak również na obliczane na jego podstawie spadki terenu i ekspozycje. Porównane zostały modele pozyskane czterema wymienionymi wcześniej metodami. Do porównania przyjęto ponadto następujące wielkości pikseli (oczek rastra): 1, 5, 10, 25, 50 i 100 m. Największa rozdzielczość (1 m), zbliżona jest do rzeczywistej dokładności pomiarów laserowych. Najmniejsza natomiast (100 m) odpowiada w przybliżeniu rozdzielczości modelu SRTM. Taki wachlarz analizowanych rozdzielczości pozwala dosyć „płynnie” prześledzić, w jaki sposób zmienia się wielkość i charakter błędów w poszczególnych modelach. Badania zostały przeprowadzone na wybranym fragmencie 2×2 km doliny Wisły pod Toruniem.
EN
Digital terrain models (DTM) have become one of the basic and most commonly used sources of data describing the shape of the Earth. Numeric terrain models are only reality models, not the ideal projections. Inseparable elements of terrain models, like in all other groups of spatial data, are mistakes, which exist in the data. There are different methods of acquiring DTM that contribute errors. Some of the most popular methods are: photogrammetric measurements, contour lines, laser scanning (LIDAR), and interferometric (InSAR). Each of them changes data in some other way, using various algorithms. An additional source of mistakes in terrain models using the raster format is the size of the smallest field for which the specified altitude has been defined. The raster model resolution is one of the main features determining the accuracy of terrain projection. The aim of this study was to evaluate the accuracy of chosen terrain models to their application in environment geography studies. This analysis has been used to show the influence of resolution and models of data acquisition for NTM on the accuracy of the terrain model itself, and also on terrain slopes and expositions calculated on its basis. Created models used for the above-mentioned methods were compared. Moreover, the following raster pixels sizes were used for this comparison: 1, 5, 10, 25, 50 and 100 m. The maximal resolution (1 m), is close to the real accuracy of laser measurements. The minimal resolution (100 m) is close to the resolution of the SRTM model. Such a variation of analyzed resolutions makes it possible to observe quite “fluently” how the size and character of mistakes change in separate models. The study area is a 2×2 km test polygon covering part of the Vistula river and its valley and is located near Torun, Poland. The obtained results show the method of collecting data has an essential influence on the accuracy of DTM, especially for high resolution models. Along with a decrease in resolution, differences between models created using separate methods also decrease. For slope models, the collected results show that models with the biggest possible resolution should be used, not smaller than 10 meters. The most essential errors in the definition of aspect are connected with areas with the smallest slopes and are relatively flat.
18
Content available Ocena dokładności modelu SRTM na obszarze Polski
PL
Treść artykułu dotyczy oceny dokładności modelu rzeźby terenu pozyskanego dla obszaru Polski z Radarowej Misji Topograficznej Promu Kosmicznego SRTM (Shuttle Radar Topography Mission). Ocenę dokładności przeprowadzono na podstawie precyzyjnych danych referencyjnych, którymi były profile terenowe pomierzone techniką GPS. Zakres badań obejmował swym zasięgiem obszary testowe, reprezentujące różne formy ukształtowania terenu, położone w granicach administracyjnych 14 województw. Obszary testowe położone były na obszarach odkrytych i nie obejmowały terenów zurbanizowanych oraz kompleksów leśnych. Miarą oceny dokładności modelu SRTM były błędy średnie liczone na podstawie różnic wysokości pomiędzy punktami profili terenowych oraz odpowiadającymi im wyinterpolowanymi punktami modelu SRTM. Niezbędne analizy przeprowadzono w środowisku oprogramowania MGE (Modular GIS Environment) firmy Intergraph oraz za pomocą narzędzi 3 DEM Terain Visualization autorstwa Richarda Horne. Stwierdzono, że dokładność bezwzględna modelu SRTM na obszarze Polski wynosi m H = 2.9 m dla terenów równinnych oraz m H = 5.4 m dla terenów falistych i pagórkowatych. Stwierdzono również, że dokładność interferometrycznego pomiaru wysokości punktów węzłowych siatki modelu SRTM degradowana jest w procesie interpolacji wysokości punktów poza węzłowych, zaś stopień tej degradacji jest funkcją deniwelacji rzeźby terenu oraz gęstości oczka siatki. Ocena statystyczna dokładności pomiaru SRTM wykazała, że pomiary interferometryczne obarczone są składową systematyczną błędu. Po wyeliminowaniu błędu systematycznego okazało się, że dokładność bezwzględna modelu SRTM na obszarze Polski kształtuje się na poziomie m H = 1.0 m dla terenów równinnych oraz m H = 2.7 m dla terenów falistych i pagórkowatych.
EN
The mission of the Endeavour spacecraft well known as SRTM (Shuttle Radar Topography Mission) six years ended ago. The obtainment of a radar data in just eleven days was the aim of mission. Based on this data, a DEM for over 80 percent of the surface of the Earth has been generated. The SRTM for all potential users is available free. For Poland, this data is accessible on level DTED-1 in HGT format with a resolution of 60 by 90 meters . The acquisition of DEM with a CE (90) accuracy better then 16 meters was the crowning achievement of the program of the SRTM mission. The accuracy of the SRTM terrain model of Eurasia after calibration of the measuring system was CE (90) = 6.2 m. The results of the research work presented in foreign publications refer to reference data which were not representative for the tested areas. In order to determine the absolute accuracy of SRMT model of Poland, a study was performed based on the reference terrain profiles measured by GPS techniques. The flat and hilly terrains were examined in administrative borders of fourteen provinces. It was not reference data for mountainous terrains. For elaboration of the SRTM data on ImageStation Intergraph software, they have been recalculated in the USGS format using modules of the 3 DEM Terrain Visualization program written by Richard Horne. For analysis of the accuracy of the SRTM model, 332 terrain profiles and 29 308 points have been measured. The accuracy of the SRTM model presented by RMSE was computed on the basis of the height differences between the profiles and model homolog points. The analyses were done in Modular GIS Environment Intergraph software. The absolute accuracy of the SRTM model for Poland was RMSE-Z = 2.9 m for flat regions and RMSE-Z = 5.4 m for hilly regions. It was confirmed that this accuracy depends on the resolution of the grid points of DEM and terrain inclination. The statistical analysis showed a systematic shift between SRTM data and reference profiles. The RMSE-Z without a systematic part was found to be 1.0 m for flat regions and 2.7 m for hilly regions of Poland. The data of SRTM level DTED-1 could be used for DEM and contour line generation on topographic maps on scales smaller then 1:50 000 and for SRTM system calibration.
EN
Calculation of the effect of topography on the observed gravity becomes particularly important when modelling high-precision geoid. It requires a digital terrain model of appropriate resolution and accuracy. Various global, regional and local digital terrain models of different accuracy and resolution are recently available. Evaluation of the DTM used is required for verification and validation of its quality as well as for estimating accuracy of geoid model derived with considering the effect of topographic masses. Two DTMs: the SRTM3 of 3"x3" resolution and the national DTM for Poland of l"x l" or l" x 2" resolution - called DTED2 - were evaluated with use of high-resolution local DTMs developed using digital photograrnmetry of 25 m x 25 m as well as the regional model in Tatra mountains of 10 mx 10 m. Then the heights of almost 1000 GPS/levelling stations of Polish geodetic control were compared with the heights from the DTED2 model. The heights of over a million of gravity stations from gravity database, that were the basis of previous geoid modelling in Poland, were also compared with the heights from the DTED2 model. The effect of uncertainty of a DTM on estimation of mean gravity anomalies was diseussed. In particular, the effect of replacing heights from gravity database with the heights from the DTED2 model in the process of calculating mean gravity anomalies, on the accuracy of geoid modelling was investigated. The use of the DTED2 model is at present recommended for determination of precise geoid model in Poland.
PL
W procesie modelowania precyzyjnej geoidy istotną rolę odgrywa znajomość topografii w punktach obserwacji grawimetrycznych. W tym celu wykorzystywane są dostępne obecnie numeryczne modele terenu o rożnej rozdzielczości przestrzennej i różnej dokładności pionowej i poziomej. W celu określenia wpływu jakości modelu terenu na dokładność geoidy niezbędne jest wcześniejsze sprawdzenie samego modelu, jego dokładności oraz wpływu błędów i rozdzielczości modelu na obliczane anomalie grawimetryczne i poprawki terenowe. Do przeprowadzenia badań wykorzystano następujące modele: model SRTM3 o rozdzielczości 3" x 3", model DTED2 o rozdzielczości l"x l" lub l"x2", modele regionalne wykonane metodą fotogrametrii cyfrowej o rozdzielczości 25 mx25 m oraz model Tatr wykonany metodami kartograficznymi o rozdzielczości 10 m x 10 m. Do oceny jakości modeli DTED2 oraz SRTM3 jako wzorcowe przyjęto modele regionalne. Zasadniczym elementem oceny tych modeli było porównanie wysokości z modeli topograficznych z wysokościami około 1000 punktów sieci POLREF, EUVN oraz WSSG. Wyinterpolowane wysokości z modelu DTED2 porównano także z wysokościami ponad l 000 000 stacji grawimetrycznych z bazy danych grawimetrycznych, które stanowiły dotychczas jedyną informację o terenie wykorzystywaną w modelowaniu geoidy na obszarze Polski. Dokonano analizy wpływu błędu wysokości na jakość obliczanych średnich anomalii grawimetrycznych. W szczególności przeanalizowano przydatność wysokości stacji grawimetrycznych z grawimetrycznej bazy danych do modelowania centymetrowej geoidy. Uzyskane wyniki świadczą o potrzebie zastąpienia wysokości stacji grawimetrycznych z grawimetrycznej bazy danych wysokościami z modelu DTED2. Wykazano również, że dla większości obszaru Polski stosowanie modelu SRTM3I w miejsce wysokorozdzielczego modelu DTED2 do obliczeń średnich anomalii grawimetrycznych nie pociąga za sobą błędów przekraczających kilku centymetrów w obliczanej undulacji geoidy.
20
Content available remote DEM data obtained from the shuttle radar topography mission - SRTM-3
PL
Istotnym problemem infrastruktur geoinformacyjnych, w tym także ESDI (European Spatial Data Infrastructure), są dane geoprzestrzenne o dostatecznej dokładności i spełniające potrzeby użytkowników. Zagadnienie to w odniesieniu do ESDI jest tematem prac zespołu ekspertów inicjatywy INSPIRE (Infrastructure for Spatial Information in Europe). W raportach zespołu przyznaje się tym danym wysoki priorytet, ponieważ są podstawą różnych analiz przestrzennych w wielu dziedzinach działalności praktycznej i badawczej. W tej sytuacji na uwagę zasługuje możliwość wykorzystania do takich zastosowań w ESDI danych uzyskanych z radarowej topograficznej misji promu kosmicznego (SRTM) zorganizowanej przez NASA. Misja ta odbyła się w lutym 2000 i jej celem było interferometryczne radarowe skanowanie powierzchni Ziemi. Zainstalowany na promie zestaw pomiarowy składał się z 60-metrowego masztu i zainstalowanych na nim dwóch równoległych układów pomiarowych (X-band i C-band). Skanowanie objęto obszar Ziemi zawarty pomiędzy równoleżnikami 54°S i 60°N. Dane SRTM, aby mogły stanowić poprawny i zweryfikowany model powierzchni terenu, wymagają wieloletnich prac. Opracowywane są dwie wersje: SRTM-1 o pełnej rozdzielczości (moduł próbkowania 1") i SRTM-3 o rozdzielczości liniowo trzykrotnie mniejszej (moduł 3"). Rzędne terenu SRTM-3 są średnimi z 9 wartości SRTM-1. Pomimo, że prace nad tymi danymi będą jeszcze trwały długo, obecnie została udostępniona surowa (nie zweryfikowana, nie poprawiona) wersja SRTM-3 dla całego zasięgu skanowania. Udostępnione dane stanowią dla celów naukowych niezwykle cenny materiał. Jednak, aby móc je wykorzystać trzeba znać ich organizację, format zapisu binarnego i dysponować oprogramowaniem do wstępnej ich obróbki w trybie zadań skryptowych. Ten ostatni element jest szczególnie istotny, ponieważ ze względu na wielką objętość przetwarzanie konwersacyjne jest bardzo pracochłonne. O objętości tych danych świadczy przykład dla obszaru Polski - zestaw taki składa się z 96 segmentów i stanowi to łącznie 138 milionów liczb.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.