Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  SPIONs
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted the particular interest of scientists from various disciplines since their obtaining to the present day. The physicochemical and pharmacokinetic properties of SPIONs-containing magnetic nanofluids, and their applicability in biomedicine, largely depend on the stability of the colloidal system, particle size, size distribution, net magnetic moment, phase composition, and type and properties of stabilizers. Also, in some cases, when using magnetic nanoparticles for biomedical purposes, it is necessary that the stabilizing ligands of nanoparticles should not significantly change the magnetic properties. From this point of view, the preparation of stable colloidal systems containing bare iron oxide nanoparticles (BIONs) in water at physiological pH attracts particular attention and becomes increasingly popular in scientific circles. This study is focused on the development of the synthesis of aqueous suspensions of SPIONs stabilized with various organic molecules (oleic acid [OA] and poly(ethylene glycol) monooleate - with molecular weights 460 and 860) using a modified controlled chemical coprecipitation reaction, as well as stable nanofluids containing BIONs in an aqueous medium at neutral pH (near-physiological). The obtained samples were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy, small-angle x-ray scattering (SAXS), dynamic light scattering (DLS), electrophoretic light scattering (ELS), and Vibrating Sample Magnetometry.
EN
Non-invasive methods for breast cancer detection in early stages may help to increase the survival rate of patients. This study aimed to evaluate the application of Anti-MUC1 antibody-based iron oxide nanoparticle (SPIONs-C595) which was assessed in vivo as a molecular imaging probe for breast cancer (MCF-7) detection using MRI. Nine groups of female NRC NU/Nu mice (each group of 3), 6 to 8 weeks old were used and MCF-7 cells were injected subcutaneously into both flanks of nude mice. After two weeks the mice received an intravenous injection of different concentrations of SPIONs-C595. The uptake ability of SPIONs-C595 on three-dimension (3D) macrostructure is exploited a modified hanging drop method using Prussian blue for MCF-7 cells. The iron content was measured in liver, kidney, spleen, and tumor. The MR imaging features and biodistribution of nanoprobe was also investigated. The MR images obtained from digested tumor after nanoprobe administration in different time-period revealed that enhancement of T1 and T2 relaxation time. Moreover, the storage stability test was shown great application and no sedimentation of nanoparticles within two months storage at 4°C. Additionally, great validation of SPIONs-C595 on the 3D spheroid of MCF-7 was observed. The biodistribution analysis showed that iron content of the spleen was more than the other studied organs. These results highlighted the feasibility of an in-vivo model for detection of breast cancer MUC1 expression. Current researches are ongoing to further enhancement of relaxation times for classification of MUC1 status using clinical specimens.
EN
Superparamagnetic iron oxide nanoparticles (SPIONs) have been synthesized using co-precipitation method. Their microstructure and dielectric properties were studied. The sugar solutions like glucose, fructose and sucrose were used as stabilizers to control the size of the SPIONs. The crystal structure and grain size of the particles were determined by X-ray diffraction. The magnetic studies of the samples were carried out using the vibrating sample magnetometer and their surface morphology was studied by HRTEM, FE-SEM and zeta potential. The dielectric properties of glucose-SPIONs (GF), fructose-SPIONs (FF) and sucrose-SPIONs (SF) were investigated in the frequency range of 10 Hz to 5 MHz at selected temperatures. The FF showed a high dielectric constant of 62 at 1 MHz and the dielectric properties of SPIONs were found to have been significantly improved, especially in the low frequency regime according to the Maxwell-Wagner interfacial polarization. The AC conductivity measurements revealed that the electrical conduction depends on both frequency and temperature. Impedance analysis was carried out using Cole-Cole plot and the conduction mechanism of the studied compounds was explained. R and C values were further calculated using RC-circuit.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.