Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  SIMP
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The literature abounds with many distinct topology optimisation methods, many of which share common parameter configurations. This study demonstrates that alternative parameter configurations may produce better results than common parameters. Additionally, we try to answer two fundamental questions: identifying the most effective topology optimisation method and determining the optimal parameter selection within this optimisation method. In order to respond to these questions, we conducted a comparative and objective analysis of topology optimisation methods. Design/methodology/approach: This paper evaluates four prominent topology optimisation methodologies, SIMP, RAMP, BESO, and LSM, based on three essential criteria: structural strength, topology quality, and computational cost. We conducted an in-depth examination of 12,500 topology optimisation results spanning a broad range of critical parameter values. These outcomes were generated using MATLAB codes. In the meantime, we comprehensively compared our findings with the existing literature on this subject. Findings: As predicted, our chosen parameters had a substantial effect on the topology quality, structural strength, and computational cost of the topology optimisation outcomes. Across the 12,500 results, many parameter combinations appeared to produce favourable results compared to conventional parameters commonly found in the existing literature. Research limitations/implications: This study focuses exclusively on four specific topology optimisation methods; however, its findings may be extrapolated to apply to other methodologies. Additionally, while it extensively examines the effects of parameters on topology quality, strength, and computational cost, it does not encompass an exploration of these parameters' impacts on other performance criteria. Originality/value: Novel parameter configurations for topology optimisation have been identified, yielding enhanced outcomes in terms of topology quality, structural strength, and computational efficiency.
EN
Purpose: This research work aims to exhibit the possibility to topologically optimize a mesostructured part printed virtually by FDM taking into account the manufacturing parameters. Design/methodology/approach: The topology optimization of a 3D part printed by FDM was carried out using the software ABAQUS. On the other hand, a numerical approach using a script based on G-code file has been achieved to create a virtual model. Then, it was optimized according to the Solid Isotropic Material with Penalization (SIMP) method, which minimizing the strain energy was the objective function and the volume fraction of 30% was the constraint. Findings: The final topological optimization design of the virtual model is approximately similar to the homogeneous part. Furthermore, the strain energy of the virtual model is less than the homogeneous part. However, the virtually 3D optimized part volume is higher than the homogeneous one. Research limitations/implications: In this study, we have limited our study on one layer owing to reduce the simulation time. Moreover, the time required to optimize the virtual model is inordinate. The ensuing study, we will optimize a multiple layer of the mesostructure. Practical implications: Our study provides a powerful method to optimize with accurately a mesostructure taken into consideration the manufacturing setting. Originality/value: In this paper, we have studied through an original approach the potential of topology optimization of a 3D part virtually printed by FDM. By means of our approach, we were able to optimize topologically the 3D parts printed by FDM taking into account the manufacturing parameters.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.