This paper analyzes the automatic classification of scenes that are the basis of the ideation and the designing of the sculptural production of an artist. The main purpose is to evaluate the performance of the Bag-of-Features methods, in the challenging task of categorizing scenes when scenes differ in semantics rather than the objects they contain. We have employed a kernel-based recognition method that works by computing rough geometric correspondence on a global scale using the pyramid matching scheme introduced by Lazebnik [7]. Results are promising, on average the score is about 70%. Experiments suggest that the automatic categorization of images based on computer vision methods can provide objective principles in cataloging images.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.