Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 19

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  SBAS
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Low-altitude photogrammetric studies are often applied in detection of aviation obstacles. The low altitude of the Unmanned Aerial Vehicle (UAV) flight guarantees high spatial resolution (X, Y) of the obtained data. At the same time, due to high temporal resolution, UAVs have become an appropriate tool for gathering data about such obstacles. In order to ensure the required accuracy of orientation of the photogrammetric block, Ground Control Points (GCPs) are measured. The recently introduced UAV positioning solutions that are based on Post-Processing Kinematic (PPK) and Real Time Kinematic (RTK) are known to effectively reduce, or, according to other sources, even completely eliminate the necessity to conduct GCP measurements. However, the RTK method involves multiple limitations that result from the need to ensure continuous communication between the reference station and the rover receiver. The main challenge lies in achieving accurate orientation of the block without the need to conduct time-consuming ground measurements that are connected to signalling and measuring the GCPs. Such solution is required if the SPP code method is applied to designation the position of the UAV. The paper presents a research experiment aimed at improving the accuracy of the determination of the coordinates of UAV for the SPP method, in real time. The algorithm of the SPP method was improved with the use of IGS products.
EN
This paper presents the results of a study on the use of different tropospheric correction models in SBAS positioning for air navigation. The paper, in particular, determines the influence of the Saastamoinen troposphere and RTCAMOPS models on the determination of aircraft coordinates and mean coordinate errors in the SBAS positioning method. The study uses real kinematic data from a GPS navigation system recorded by an onboard GNSS satellite receiver as well as SBAS corrections. In the experiment, the authors include SBAS corrections from EGNOS and SDCM augmentation systems. The navigation calculations were performed using RTKLIB v.2.4.3 and Scilab 6.1.1 software. Based on the conducted research, it was found that the difference in aircraft coordinates using different troposphere models can reach up to ±2.14 m. Furthermore, the use of the RTCA-MOPS troposphere model improved the values of mean coordinate errors from 5 to 9% for the GPS+EGNOS solution and from 7 to 12% for the GPS+SDCM solution, respectively. The obtained computational findings confirm the validity of using the RTCA-MOPS troposphere model for SBAS positioning in aerial navigation.
3
Content available remote Zastosowanie metody pozycjonowania SBAS/EGNOS do wyznaczenia współrzędnych BSP
PL
W artykule dokonano przedstawienia wyników badań dotyczących wyznaczenia pozycji BSP (Bezzałogowy Statek Powietrzny) z użyciem metody pozycjonowania SBAS (Satellite Based Augmentation System) dla systemu wspomagania EGNOS (European Geostationary Navigation Overlay Service). W eksperymencie wykorzystano jednoczęstotliwościowy odbiornik AsteRx-m2 UAS, który rejestrował obserwacje satelitarne GPS (Global Positioning System) oraz poprawki EGNOS. Lot testowy wykonano w 2020 r. w okolicach Warszawy. Obliczenia nawigacyjne dla określenia pozycji BSP podczas lotu wykonano w oprogramowaniu gLAB v.5.5.1. Na podstawie wykonanych obliczeń wyznaczono: współrzędne BSP w układzie elipsoidalnym BLh, błędy średnie współrzędnych BSP, wartości współczynników geometrycznych DOP (Dilution of Precision). Ponadto w trakcie wykonanych obliczeń stwierdzono, że wartości błędów średnich wyznaczonych współrzędnych BSP nie przekraczają 3.6 m, zaś maksymalna wartość współczynnika geometrycznego GDOP (Geometric DOP) jest mniejsza niż 3.5.
EN
The article presents the results of research on the determination of the UAV (Unmanned Aerial Vehicle) position using the SBAS (Satellite Based Augmentation System) positioning method for the EGNOS (European Geostationary Navigation Overlay Service) support system. The experiment used a single-frequency AsteRx-m2 UAS receiver, which recorded GPS (Global Positioning System) satellite observations and EGNOS corrections. The test flight was made in 2020 near Warsaw. Navigation calculations for determining the UAV position during the flight were made in the gLAB v.5.5.1 software. On the basis of the performed calculations, the following were determined: BSP coordinates in the ellipsoidal system BLh, mean errors of the BSP coordinates, values of the geometric coefficients DOP (Dilution of Precision). Moreover, during the performed calculations, it was found that the mean errors of the determined UAV coordinates do not exceed 3.6 m, and the maximum value of the Geometric DOP coefficient is lower than 3.5.
EN
The article presents a modified scheme of determining the accuracy parameter of SBAS (Satellite Based Augmentation System) positioning with use of two supporting systems: EGNOS (European Geostationary Navigation Overlay Service) and SDCM (System of Differential Correction and Monitoring). The proposed scheme is based on the weighted mean model, which combines single solutions of EGNOS and SDCM positions in order to calculate the accuracy of positioning of the aerial vehicle. The applied algorithm has been tested in a flight experiment conducted in 2020 in north-eastern Poland. The phase of approach to landing of a Diamond DA 20-C1 aircraft at the EPOD airport (European Poland Olsztyn Dajtki) was subjected to numerical analysis. The Septentrio AsterRx2i geodesic receiver was installed on board of the aircraft to collect and record GPS (Global Positioning System) observations to calculate the navigation position of the aircraft. In addition, the EGNOS and SDCM corrections in the “*.ems” format were downloaded from the real time server data. The computations were realized in RTKPOST library of the RTKLIB v.2.4.3 software and also in SciLab application. Based on the conducted research, it was found that the accuracy of aircraft positioning from the EGNOS+SDCM solution ranged from -1.63 m to +3.35 m for the ellipsoidal coordinates BLh. Additionally, the accuracy of determination of the ellipsoidal height h was 1÷28% higher in the weighted mean model than in the arithmetic mean model. On the other hand, the accuracy of determination of the ellipsoidal height h was 1÷28% higher in the weighted mean model than for the single EGNOS solution. Additionally, the weighted mean model reduced the resultant error of the position RMS-3D by 1÷13% in comparison to the arithmetic mean model. The mathematical model used in this study proved to be effective in the analysis of the accuracy of SBAS positioning in aerial navigation.
EN
The paper presents the results of research on the determination of the accuracy parameter for European Geostationary Navigation Overlay System (EGNOS) positioning for a dual set of on-board global navigation satellite system (GNSS) receivers. The study focusses in particular on presenting a modified algorithm to determine the accuracy of EGNOS positioning for a mixed model with measurement weights. The mathematical algorithm considers the measurement weights as a function of the squared inverse and the inverse of the position dilution of precision (PDOP) geometrical coefficient. The research uses actual EGNOS measurement data recorded by two on-board GNSS receivers installed in a Diamond DA 20-C airplane. The calculations determined the accuracy of EGNOS positioning separately for each receiver and the resultant value for the set of two GNSS receivers. Based on the conducted tests, it was determined that the mixed model with measurement weights in the form of a function of the inverse square of the PDOP geometrical coefficient was the most efficient and that it improved the accuracy of EGNOS positioning by 37%–63% compared to the results of position errors calculated separately for each GNSS receiver.
EN
Fault detection and exclusion (FDE) is the main task for pre-processing of global navigation satellite system (GNSS) positions and is a fundamental process in integrity monitoring that is needed to achieve reliable positioning for applications such as in intelligent transport systems. A widely used method is the solution separation (SS) algorithm. The FDE in SS traditionally builds the models assuming positioning errors are normally distributed. However, in urban environments, this traditional assumption may no longer be valid. The objective of this study is to investigate this and further examine the performance of alternative distributions, which can be useful for FDE modelling and thus improved navigation. In particular, it investigates characterization of positioning errors using GNSS when the Australian satellite-based augmentation system (SBAS) test bed is used, which comprised different positioning modes, including single-point positioning (SPP) using the L1 global positioning system (GPS) legacy SBAS, the second-generation dual-frequency multi-constellation (DFMC) SBAS service for GPS and Galileo, and, finally, precise point positioning (PPP) using GPS and Galileo observations. Statistical analyses are carried out to study the position error distributions over different possible operational environments, including open sky, low-density urban environment, and high-density urban environment. Significant autocorrelation values are also found over all areas. This, however, is more evident for PPP solution. Furthermore, the applied distribution analyses applied suggest that in addition to the normal distribution, logistic, Weibull, and gamma distribution functions can fit the error data in various cases. This information can be used in building more representative FDE models according to the work environment.
EN
The European Geostationary Navigation Overlay Service (EGNOS) augments the open public service offered by the GPS in Europe making suitable the use of GPS for safety critical applications. EGNOS is designed according to the same standard [ICAO SARPs, 2018] such as US WAAS, Japanese MSAS, GAGAN in India, SDCM in Russia and KAAS in South Korea and provides over Europe both corrections and integrity information about the GPS system. As the European SBAS, EGNOS offers three services: Open Service, Safety-of-life Service and EDAS. In general, the EGNOS Safety-of-life (SoL) Service is intended for transport applications in different domains (and currently in use by Aviation) where lives could be endangered if the performance of the navigation system is degraded below specific accuracy limits without giving notice in the specified time to alert. This requires that the relevant authority of the particular transport domain determines specific requirements for the navigation service based on the needs of that domain. Even if the main objective of the SBAS systems is the civil aviation community, the advantages provided by this technology are very useful to users from other domains. In this sense, a new EGNOS service for maritime is currently under development with the objective to complement the existing maritime radionavigation systems (e.g. DGNSS) in the European region for enhanced accuracy and integrity information where there is no back-up infrastructure or in poorly covered environments. One of the steps needed for the development of this new EGNOS maritime service is the definition of a minimum set of recommendations for receiver manufacturers to provide them with a clear view on how to design their SBAS receivers to be compliant with the requirements defined for such a service. For that, EC, GSA, ESA and ESSP SAS have been working together since 2016 to develop guidelines for manufacturers for the implementation of SBAS in shipborne receiver. These guidelines, developed in the frame of the SBAS Working Group created in the Special Committee (SC) 104 on Differential Global Navigation Satellite Systems (DGNSS) of Radio Technical Commission for Maritime Services (RTCM), define a minimum set SBAS messages to be compliant with the International Maritime Organization (IMO) Resolution A.1046 and additionally provide a test specifications. This paper presents a summary of these SBAS guidelines as well as the preliminary list of tests that must be fulfilled to be compliant. Additionally, a preliminary performance assessment of the EGNOS maritime service based on IMO Res. A.1046 (27) for a 24-months period during 2016, 2017 and 2018 is presented. The performance parameters are calculated using real data to show what level of performance was attained by EGNOS. The assessment was done using both EGNOS ground monitoring stations (RIMS) and fault-free receivers, based on these guidelines, fed with actual data. The performance is shown for each performance parameter defined in the IMO Res. A.1046 (27) and for navigation in Ocean Waters and coastal waters, harbour entrances and harbour approaches. The paper also includes Service Coverage maps representing where EGNOS maritime service based on IMO Res. A.1046 (27) is fulfilling the requirements. Furthermore, GSA and ESSP, with the collaboration of The Norwegian Coastal Administration and Hurtigruten Cruises, carried out a GNSS data collection campaign of 10 days along the Norwegian coast with a trajectory through Trondheim to Kirkenes and Kirkenes to Bergen in February 2018. The aim of this data campaign was to assess EGNOS performance at user level in the maritime domain at high latitudes in Europe. The data campaign includes the navigation outside the MT27 region defined in EGNOS at that moment (70ºN). A performance assessment of EGNOS using some commercial receivers and a software receiver in line with the SBAS guidelines will be presented, showing the observed accuracy and availably results of the EGNOS solution.
EN
GNSS measurements can be supplemented by the information available in EGNOS system even if one has only GNSS receiver that is not processing Satellite-Based Augmentation Systems data. The article describes how to obtain the variances of ranges to the satellites used for positioning when the final antenna position and satellites’ elevation and azimuths values are recorded. To verify how the resultant estimates of position error correspond to real errors the research based on GPS receiver was conducted.
PL
Pomiary GNSS mogą być wspomagane informacją dostępną w systemie EGNOS nawet, gdy wykorzystuje się odbiornik GNSS, który nie jest zdolny do przetwarzania danych z system SBAS. W artykule opisano, w jaki sposób można uzyskać informację o wariancji pomierzonych odległości do satelitów, jeśli znane są pozycja anteny oraz azymuty i wysokości satelitów ponad horyzontem. Dla zweryfikowania, w jakim stosunku pozostają estymowane błędy pozycji względem rzeczywistych błędów przedstawiono wyniki badań przeprowadzonych z użyciem odbiornika GPS.
EN
We propose a Marine Vessel Protection Area (MVPA) model as the means of satellite-based augmentation system (SBAS) integrity data presentation in an electronic chart system (ECS) display. The model takes into account several factors that influence the shape and dimensions of the MVPA. These factors include GNSS signal aspects, where measurement errors depend on the geometry of visible satellites and the signal propagation, the ship’s size, the ship’s heading and its estimated accuracy, position of the GNSS/SBAS antenna relative to the ship’s hull, and SBAS integrity data. The resultant safety contour or domain can be displayed within the ECS or ECDIS as a graphical representation of the marine ship position and the protection level of the electronic position/course fixing equipment, equivalent to the horizontal protection level (HPL) used in aviation.
10
Content available remote SBAS integrity data in e-navigation systems
EN
The paper presents the usable form of SBAS integrity data presentation in e-navigation systems. The usability testing of ECDIS display augmented with innovative SBAS integrity data tool was based on the IMO’s Guidelines on Software Quality Assurance and Human-centred Design for e-Navigation. By incorporating the eye tracking techniques into the procedure it was possible to measure the visual attention distribution and the cognitive workload. The applied usability evaluation method proved that the seafarers were able to successfully perform primary operations of the systems reasonably upgraded with SBAS integrity tool and raise their situation awareness, regardless of the type and specifications of the system and their knowledge and experience with the system.
PL
W artykule opisano przyjazny dla użytkownika sposób prezentacji danych wiarygodności (integralności) GNSS pozyskiwanych z SBAS w systemach e-Nawigacji. Test użyteczności zobrazowania ECDIS z danymi SBAS został oparty o wytyczne IMO: „Guidelines on Software Quality Assurance and Human-centred Design for e-Navigation”. Poprzez włączenie do procedury testu technik okulograficznych możliwe było zmierzenie koncentracji wzrokowej użytkownika oraz jego obciążenia poznawczego. Zastosowana metoda oceny pozwoliła dowieść, że nawigatorzy byli w stanie wykonać podstawowe operacje na systemach wyposażonych w narzędzie SBAS podobniejak na systemach bez tego narzędzia równocześnie podnosząc swoją świadomość sytuacyjną.
PL
Artykuł prezentuje przegląd istniejących systemów nawigacji satelitarnej mających zastosowanie w lotnictwie. Zwięźle opisane zostały zalety ich stosowania z uwzględnieniem spełnienia niezbędnych wymogów związanych z ich wdrożeniem. Skupiono się na najbardziej popularnych systemach, które znajdują obecnie zastosowanie w nawigacji lotniczej na całym świecie. Krótko przedstawione zostały systemy typu SBAS (amerykański WAAS oraz europejski EGNOS), opisano GBAS oraz techniki autonomicznego pozycjonowania satelitarnego dopuszczone w nawigacji. Wskazane zostały zalety zastosowań systemów satelitarnych w nawigacji wraz z przekrojowymi zasadami ich działania. Zwrócono uwagę na rolę dokładności oraz wiarygodności w ich funkcjonowaniu wraz z przedstawieniem algorytmów monitorujących wartości tych parametrów.
EN
The article presents an overview of existing satellite navigation systems applicable in aviation. The advantages of their application were briefly described (taking into account the necessary requirements related to their implementation). Authors focused on the most common operating systems that are currently used in air navigation. The article presents the types of SBAS systems (American WAAS and European EGNOS), GBAS and the techniques related to satellite autonomous positioning allowed in navigation. The advantages of satellite systems applications in navigation with principles of their operation were described. Attention has been paid to the role of accuracy and integrity with the algorithms for monitoring values of these parameters.
Logistyka
|
2015
|
nr 4
6860--6864, CD2
PL
Niniejszy artykuł prezentuje wyniki pomiarów przeprowadzonych w celu zbadania precyzji współrzędnych określonych z wykorzystaniem odbiornika GNSS L1. Odbiorniki jednoczęstotliwościowe są znacznie tańsze od odbiorników dwuczęstotliwościowych stąd próba weryfikacji możliwości tych odbiorników w kontekście zastosowań nawigacyjnych. W eksperymencie wykorzystano odbiorniki umożliwiające obserwacje sygnału systemu GPS (Global Positioning System), GLONASS (Globalnaja nawigacionnaja sputnikowaja sistiema) i SBAS (Satellite Based Augmentation System). Artykuł opisuje wyniki pomiarów przeprowadzonych na dwóch punktach poligonowych.
EN
This article describes results of tests taken with single frequency GNSS receiver. The main task of the trial was to investigate accuracy and precision of coordinates developed with single frequency observations, using GPS, GPS+GLONSS and GPS+GLONSS+SBAS.
EN
The first PBN approach procedures in Slovakia became operationally effective at Bratislava and Košice airports as of 5 February 2015. The article presents the results of EGNOS Safety-of-Life Service preliminary examination in eastern Slovakia, just before official introduction of these procedures. The practical examination includes static test and test flight made with Cessna plane taking off at the airport in Bidovce — LZBD (just 16 km from international airport in Košice) and passing a route along eastern border of Slovakia. In this region the performance of EGNOS could be unsatisfactory due to lack of RIMS stations to the east from there. The experiment was performed on October 13, 2014 in cooperation of the Air Force Academy in Deblin, the Department of Aviation of Technical University in Košice and University of Warmia and Mazury in Olsztyn.
PL
Pierwsze procedury podejścia do lądowania typu PBN (Performance-Based Navigation) na Słowacji zostały wdrożone na lotniskach w Bratysławie i Koszycach 5 lutego 2015 r. W artykule przedstawiono wyniki wstępnych analiz serwisu Safety-of-Life systemu EGNOS we wschodniej Słowacji, tuż przed oficjalnym wprowadzeniem tych procedur. Badania praktyczne obejmują test statyczny oraz lot testowy wykonany samolotem Cessna z lotniska Bidovce-LZBD (oddalonego zaledwie 16 km od międzynarodowego lotniska w Koszycach) po trasie wzdłuż wschodniej granicy Słowacji. W tym regionie jakość systemu EGNOS może być niezadowalająca z powodu braku stacji monitorujących RIMS na wschód od tego miejsca. Eksperyment przeprowadzono 13 października 2014 r. we współpracy Wyższej Szkoły Oficerskiej Sił Powietrznych w Dęblinie, Wydziału Lotnictwa Politechniki w Koszycach oraz Uniwersytetu Warmińsko-Mazurskiego w Olsztynie.
14
Content available remote Integracja wskaźników CDI z symulatorem lotu laboratorium wirtualnego latania
PL
Artykuł opisuje projekt oraz implementację wskaźników CDI (Course Deviation Indicator) realizowaną w trakcie projektu EGALITE. Opracowane oprogramowanie posłużyło do integracji wskaźników z symulatorami lotniczymi klasy FNTP II będącymi na wyposażeniu Laboratorium Wirtualnego Latania Wydziału Automatyki, Elektroniki i Informatyki Politechniki Śląskiej w Gliwicach. Dzięki temu możliwe było wykorzystanie symulatorów do prac badawczych dotyczących zastosowania nawigacji satelitarnej w procedurach podejść precyzyjnych LPV. Celem wykorzystania symulatorów Laboratorium Wirtualnego Latania w projektach naukowych Unii Europejskiej jest redukcja czasu oraz zasobów finansowych niezbędnych do badań w dziedzinie aeronautyki. Zwiększa się również w ten sposób bezpieczeństwo badań naukowych oraz prac badawczo-rozwojowych związanych z aeronautyką.
EN
The article presents design and implementation of CDI (Course Deviation Indicator) gauges which has been done within EGALITE project. The software developed served for integration of these gauges with flight simulators of FNTP class, which are installed at Virtual Flying Laboratory located at Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology in Gliwice. These works made possible to use flight simulators in research on application of satellite navigation in precision approaches procedures LPV. The aim of use the Virtual Flying Laboratory simulators in the EU scientific projects allows to reduce time and money for the aeronautic research. It also increases safety of aeronautic flight research and development studies.
EN
In this work the EGNOS performance before and after applying a novel methodology called Error Extraction is tested using real data. These data are collected at the EGNOS Monitoring Station placed in Sofia by Eurocontrol. The tests concern aircraft navigation, namely Approach with Vertical Guidance services. All results confirm that the designed new algorithms are very promising. They allow reduction of the error standard deviation and significant availability improvement without breaches of the integrity. The probability of system discontinuity decreases substantially.
PL
W artykule przedstawiono problematykę wykorzystania systemu EGNOS do pozycjonowania samolotu w Polsce wschodniej. W tym celu przeprowadzono loty eksperymentalne w okolicach lotniska w Dęblinie i w Chełmie. Precyzyjna trajektoria lotu została wyznaczona przy pomocy dwuczęstotliwościowych odbiorników geodezyjnych, marki Topcon, z dokładnością centymetrową. Pozycję odniesienia porównano z danymi zarejestrowanymi przez dwa odbiorniki nawigacyjne typu Thales MobileMapper pracujące w trybie autonomicznym oraz EGNOS. Jak wynika z badań rozważany system nie spełnia wymagań określonych dla nawigacji lotniczej na tym obszarze.
EN
The paper presents results of the research concerning the determination of aircraft positioning accuracy with the use of GPS and EGNOS. Experimental flights were carried out in 2010, in south-eastern part of Poland, in Dęblin and Chełm. Precise trajectory of the aircraft was determined with the use of dual frequency geodetic Topcon receivers with centimetre accuracy. The reference position was compared with data logged by two navigation receivers, Thales MobileMapper, working in autonomous and EGNOS mode. As a result of the studies, it turned out that EGNOS do not provide requirements for SBAS (Satellite Based Augmentation Service) operations in this area.
PL
Wykorzystanie systemu GNSS (Global Navigation Satellite System) w lotnictwie jest możliwe jedynie w połączeniu z systemem poprawiającym wiarygodność oraz dokładność pozycjonowania autonomicznego. Jednym z takich systemów jest, szeroko dostępny i bezpłatny, europejski system EGNOS (European Geostationary Navigation Overlay Service). System EGNOS jest obecnie w końcowej fazie testów i powinien osiągnąć pełną operacyjność na początku marca 2011 roku. Niestety w Polsce, a w szczególności w jej wschodniej części, ze względu na obecne rozmieszczenie stacji RIMS, działanie systemu może nie spełniać gwarantowanych na zachód od Wisły parametrów. Decyzja o tym czy na danym obszarze system spełnia wymagane parametry, może być wydana po serii prób i testów. Do tego celu stosuje się specjalistyczne oprogramowanie PEGASUS (Prototype EGNOS and GBAS Analysis System Using SAPPHIRE). Tego typu szczegółowe testy planuje się przeprowadzić w Olsztynie, w ramach opracowania procedur lotów przy wykorzystaniu nawigacji obszarowej RNAV na terenie lotniska należącego do Aeroklubu Warmińsko-Mazurskiego w Olsztynie.
EN
Today usage of GNSS (Global Navigation Satellite System) in aviation is possible only using external services which can improve integrity and accuracy of autonomous positioning. One of such systems is European EGNOS (European Geostationary Navigation Overlay Service). EGNOS is currently in the final stage of getting "Full Operation Capability - FOC", which is expected in the beginning of March 2011. Unfortunately in Poland, especially in eastern part, the proper operation of system is uncertain, which is directly caused by present RIMS stations configuration. Decision about whether the system meets expectations for relevant area can be made after series of tests. Specialist software - PEGASUS (Prototype EGNOS and GBAS Analysis System Using SAPPHIRE) can be used to reach this aim. That kind of detailed tests is planned to be carried out in the frame of development of area navigation (RNAV) procedure at the Warmia and Mazury Aeroclub airport in Olsztyn.
EN
Actually (June 2011) more than 60 operational GPS and GLONASS (Satellite Navigation Systems - SNS), EGNOS, MSAS and WAAS (Satellite Based Augmentation Systems – SBAS) satellites are in orbits transmitting a variety of signals on multiple frequencies. All these satellite signals and different services designed for the users must be compatible and open signals and services should also be interoperable to the maximum extent possible. Interoperability definition addresses signal, system time and geodetic reference frame considerations. The part of compatibility and interoperability of all these systems and additionally several systems under construction as Compass, Galileo, GAGAN, SDCM or QZSS in computation user’s position is presented in this paper. Three parameters - signal in space, system time and coordinate reference frame were taken into account in particular.
PL
W każdym nawigacyjnym systemie satelitarnym (NSS) i satelitarnym systemie wspomagającym (SSW) można wyróżnić trzy segmenty: kosmiczny, kontrolno-sterujący naziemny i użytkownika. Segment naziemny składa się z co najmniej jednej głównej stacji kontrolnej, sieci stacji śledzących oraz sieci stacji korygujących. W artykule przedstawiono zadania, liczebność oraz lokalizację wszystkich NSS i SSW, zarówno już funkcjonujących, jak i dopiero budowanych. Wspomniano również o głównych celach modernizacji segmentu naziemnego.
EN
Each satellite navigation system (SNS) and satellite based augmentation system (SBAS) is compromised of three segments: satellite constellation, ground-control/monitoring network and user receiving equipment. The major elements of ground segment consist of master control station(s), monitor stations and ground antennas. The main objectives, the number and location of these stations and antennas in SNS and SBAS actually fully operational and under construction, regional and commercial systems are described in this paper. The driving components of the ground segment modernization of all these systems are presented also.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.