Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  S-layer proteins
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Bacillus cereus bacteria and their by-products were used as surface-active agents for surface hydrophobicity of the apatite in the flotation process leading to phosphate ores’ enrichment. Recently, proteomics is used to investigate the biochemical processes through discovering new proteins or investigating protein-protein interactions. In this work, we investigated the physicochemical behavior of pure apatite and quartz minerals in the presence of Bacillus cereus using zeta-potential, FTIR, and hydrophobicity measurements. Our results indicated that isoelectric point (IEP) occurred at pH 4.7 for apatite and 2.1 for quartz mineral. Bacillus cereus treatment decreased IEP of apatite to 1.8; while there was no significant change in IEP value of quartz. We used comprehensive proteomic profile analysis of Bacillus cereus in the presence of apatite mineral to identify the biological mechanism and molecules involved in such enrichment capacity. Our data identified the up-regulated Surface Layer (S-Layer) protein in this bacterial strain to be associated with the best mineral yield.
2
Content available remote Mechanism of anchoring proteins on the cell envelope
EN
Surface proteins, essential structural components of bacterial cell wall, are synthesized as precursors equipped with specific functional domains. The N-terminal signal module enables translocation across the plasma membrane via Sec or Tat pathways, while sorting motif, located in the C-terminus, is responsible for protein attachment to the cell wall peptidoglycan. Only exception are lipoproteins which lipoylated cysteinyl residue connected with bacterial membrane is in N-terminal part of protein. Most of surface proteins, as surface (S-) layer proteins, internalins or autolysins, are linked to the different structures of cell wall through non covalent forces. From the other hand, molecules with LPXTG motif, which attachment involves sortase activity, are linked to the peptidoglycan by covalent bond. Due to structural, chemical and physicochemical properties, surface proteins are attractive components of diverse industrial or medical systems. Knowledge about mechanism of anchoring proteins to the cell envelope will open new possibility of their applications.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.