Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Rutherford backscattering spectrometry
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Rare earth (RE) elements are important for the optical tuning of wide bandgap oxides (WBO) such as β-Ga2O3 or ZnO, because β-Ga2O3:RE or ZnO:RE show narrow emission lines in the visible, ultra-violet and infra-red region. Ion implantation is an attractive method to introduce dopant into the crystal lattice with an extraordinary control of the dopant ion composition and location, but it creates the lattice damage, which may render the dopant optically inactive. In this research work, we investigate the post-implantation crystal lattice damage of two matrices of wide-bandgap oxides, β-Ga2O3 and ZnO, implanted with rare-earth (RE) to a fluence of 5 x 10^14, 1 x 10^15 and 3 x 10^15 atoms/cm^2, and post-growth annealed in Ar and O2 atmosphere, respectively. The effect of implantation and annealing on both crystal lattices was investigated by channeling Rutherford backscattering spectrometry (RBS/C) technique. The level of crystal lattice damage caused by implantation with the same RE fluences in the case of β-Ga2O3 seems to be higher than in the case of ZnO. Low temperature photoluminescence was used to investigate the optical activation of RE in both matrices after performed annealing.
EN
Undoped ZnO thin films have been prepared on glass substrates at different substrate temperatures by spray pyrolysis method. The effect of temperature on the structural, morphological and optical properties of n-type ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the ZnO thin films were polycrystalline with wurtzite structure. Scanning electron microscopy (SEM) measurements showed that the surface morphology of the films changed with temperature. The studies demonstrated that the ZnO film had a transmission of about 85 % and energy gap of 3.28 eV at 450 degrees C. The RBS measurements revealed that ZnO layers with a thickness up to 200 nm had a good stoichiometry.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.