Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Rough Set Theory
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the context of big data, granular computing has recently been implemented by some mathematical tools, especially Rough Set Theory (RST). As a key topic of rough set theory, feature selection has been investigated to adapt the related granular concepts of RST to deal with large amounts of data, leading to the development of the distributed RST version. However, despite of its scalability, the distributed RST version faces a key challenge tied to the partitioning of the feature search space in the distributed environment while guaranteeing data dependency. Therefore, in this manuscript, we propose a new distributed RST version based on Locality Sensitive Hashing (LSH), named LSH-dRST, for big data feature selection. LSH-dRST uses LSH to match similar features into the same bucket and maps the generated buckets into partitions to enable the splitting of the universe in a more efficient way. More precisely, in this paper, we perform a detailed analysis of the performance of LSH-dRST by comparing it to the standard distributed RST version, which is based on a random partitioning of the universe. We demonstrate that our LSH-dRST is scalable when dealing with large amounts of data. We also demonstrate that LSH-dRST ensures the partitioning of the high dimensional feature search space in a more reliable way; hence better preserving data dependency in the distributed environment and ensuring a lower computational cost.
EN
Selection is a key element of the cartographic generalisation process, often being its first stage. On the other hand it is a component of other generalisation operators, such as simplification. One of the approaches used in generalization is the condition-action approach. The author uses a condition-action approach based on three types of rough logics (Rough Set Theory (RST), Dominance-Based Rough Set Theory (DRST) and Fuzzy-Rough Set Theory (FRST)), checking the possibility of their use in the process of selecting topographic objects (buildings, roads, rivers) and comparing the obtained results. The complexity of the decision system (the number of rules and their conditions) and its effectiveness are assessed, both in terms of quantity and quality – through visual assessment. The conducted research indicates the advantage of the DRST and RST approaches (with the CN2 algorithm) due to the quality of the obtained selection, the greater simplicity of the decision system, and better refined IT tools enabling the use of these systems. At this stage, the FRST approach, which is characterised by the highest complexity of created rules and the worst selection results, is not recommended. Particular approaches have limitations resulting from the need to select appropriate measurement scales for the attributes used in them. Special attention should be paid to the selection of network objects, in which the use of only a condition-action approach, without maintaining consistency of the network, may not produce the desired results. Unlike approaches based on classical logic, rough approaches allow the use of incomplete or contradictory information. The proposed tools can (in their current form) find an auxiliary use in the selection of topographic objects, and potentially also in other generalisation operators.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.