In this paper, we study factorizability of C-valued formal series at fixed vertices, called the graph zeta functions, induced by the reduced length on the graph groupoids of given finite connected directed graphs. The construction of such functions is motivated by that of Redei zeta functions. In particular, we are interested in (i) “non-factorizability” of such functions, and (ii) certain factorizable functions induced by non-factorizable functions. By constructing factorizable functions from our non-factorizable functions, we study relations between graph zeta functions and well-known number-theoretic objects, the Riemann zeta function and the Euler totient function.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.