The introduction of new exhaust emissions norms for motor vehicles forces manufacturers to rely on th new technologies of exhaust gas aftertreatment and emission reduction. The past studies by the authors demonstrated a significant emission of nanoparticles from the gasoline engines with direct fuel injection, especially dangerous for the human health and life. The latest solution is a particulate filter designed for spark ignition engines, introduced in parallel with a norm limiting their number emission. The research conducted within the article concerned testing its effectiveness by measuring the vehicle equipped with and without the filter under real driving conditions. The drive cycle was made in accordance with the requirements of the RDE (Real Driving Emission) standard using PEMS (Portable Emissions Measurement System) equipment. The values of harmful gaseous components and solid particles were measured in terms of mass and number. The comparison of emission results indicated a significant efficiency of the filter in terms of particle weight and number reduction. The dimensional distribution of particle diameters were also analyzed, which changed as a result of the filter. The authors believe that the filter efficiency is the result of much higher temperatures of exhaust gases than in the case of diesel engines, which causes the incineration.
The type approval tests of vehicles with internal combustion engines increasingly include issues regarding the assessment of ecological indicators in real traffic conditions. This is done with the help of specialized equipment from the PEMS (Portable Emissions Measurement Systems) group. This requires not only a series of test procedures, but also assembly of technically advanced equipment along with the proper preparation of the vehicle's exhaust system. Currently, activities are being carried out to develop solutions for non-invasive assessment of ecological indicators from moving vehicles. The article discusses these types of solutions, at the same time indicating their strengths and weaknesses. Also presented are pollutant emission tests in real operating conditions that will be used to develop a modular exhaust emission gateway. The result of the analysis was to indicate the development directions of methods for exhaust emission assessment from vehicles in motion.
Modernization of passenger cars and constant development of existing legislation lead to a reduction of exhaust emissions from these vehicles. In accordance with package 3 of the RDE test procedure, the European Commission has extended testing methods by including exhaust emissions during a cold start. The article compares the research results on the impact of ambient temperature during the cold start of spark-ignition and compression-ignition engines in road emission tests. The tests were carried out in line with the requirements of the RDE test procedure for passenger cars meeting the Euro 6d-Temp emissions standard. The obtained results were analyzed, i.e. there were compared the engine and vehicle operation parameters and the values of road exhaust emissions, during the cold start of gasoline and diesel engines at the ambient temperature of approximately 25°C. The summary presents the share of cold start phase of a passenger car (at the ambient temperature of around 25°C) for each exhaust emission compound in the urban part of the test, and in the entire RDE test, depending on the engine type used.
The article compares driving test data using the latest legislative proposals applicable to passenger cars with different drives. For this purpose, cars of one type were selected, meeting the same exhaust toxicity standard (Euro 6c) and differing in used internal combustion engines (with spark-ignition, compression-ignition and hybrid drive). Several measurements were performed on the same test route in accordance with the RDE test guidelines, which requires a several of criteria to be met. These criteria include the length of the measuring sections, their overall timeshare and the dynamic characteristics of the drive. A portable emissions measurement system (PEMS) was used to record the engine and vehicle operating parameters and to measure the exhaust emissions during tests. This allowed for the monitoring of parameters such as: load value, engine speed and vehicle velocity. Then the obtained results were analyzed for their compatibility with the RDE procedure requirements. By determining the road emission of individual harmful compounds for all vehicles and the dynamic parameters of drive (relative positive acceleration and product of speed and positive acceleration) in various phases of the road test it was possible to compare them. On this basis, the impact of dynamic conditions of road tests on the obtained results of the road exhaust emission of harmful compounds for passenger cars with various drives was defined.
The article compares data obtained in road tests with the latest legislative proposals relating to various applications of internal combustion engines. Passenger car emission tests have been performed several times on the same test route in accordance with the RDE procedure guidelines, for which a dozen or so criteria must be met, including the distance of each of the drive sections, their in the drive time and the dynamic characteristics of the drive. The analysis was also based on a two-dimensional operating density characterization, presented in the vehicle speed-acceleration coordinates. As a result, it was possible to compare dynamic properties, operating time density and, thus, to check the validity of conducted drive tests in terms of their feasibility and emission values. An exhaust emission related comparison of three types of powertrain have been presented: gasoline, diesel and hybrid in the RDE tests. The authors proposed a new form of presenting the road exhaust emissions results in relation to the carbon dioxide emission, referred to as a standardization of the emission results. The exhaust emissions from city buses fitted with different powertrains tested on an actual bus route and in the SORT test were also compared.
The field of vehicular exhaust emissions is experiencing wide-ranging and rapid changes. Air quality is very high on the political agenda and pressure remains to limit and reduce greenhouse gas emissions from the road transport sector. In addition to limits being increasingly stringent, the list of parameters subject to legal limits are slowly expanding – and, most importantly, these limits must be met under a wide wide range of conditions. A range of strategies are available to overcome these difficulties, which was explored during the 5th International Exhaust Emissions Symposium (IEES) hosted at BOSMAL in May 2016. This paper reports and summarises the topics of the 5th IEES and attempts a synthesis on the current status of the field and what the coming years may hold for the automotive and fuel industries and other allied fields.
The major global automotive markets have all set limits for exhaust emissions from new road vehicles, which have become increasingly stringent over the past few decades. There is also considerable pressure to reduce fuel consumption and CO2 emissions – around 80% of all new passenger cars sold globally are subject to some kind of energy efficiency regulation. Such legal requirements necessitate extensive R&D and testing and the entire field is undergoing a period of rapid change. Despite a recent trend towards harmonisation, at present significant regional differences exist, which vary from the analytical laboratory methods specified, the list of regulated pollutants, the numerical values of the emissions limits and the test cycles employed for engine and chassis dynamometer testing of vehicles and their powertrains. Here the key points are reviewed and strategies and technologies employed to deal with these emissions challenges are discussed. Incoming automotive emissions regulations including the WLTP and Real Driving Emissions are discussed and in conclusion likely directions in powertrain technology are identified.
New test procedures for determining exhaust emission from passenger vehicles will be introduced in 2017. For several years, the European Commission has been developing new procedures, which aim is to perform tests in road conditions. The purpose is to determine the real values of emissions, which are not always reflected by the level of emissions obtained in the laboratory. Proper and accurate procedures for determining emissions in real traffic conditions (RDE – Real Driving Emission) have not yet been approved (as opposed to Heavy Duty Vehicles for which such conditions already exist), but there are proposals that are currently being analyzed by major research centers in Europe. There are many differences between those proposals such as determining road emission or research methodology related to emission measurement of hydrocarbons. The work compares the results of emissions measured in road tests using the latest legislative proposals related to passenger cars. The results are shown in relation to the used measurement method: classic method of determining exhaust emission; uses all measurement data determining the mass of harmful compounds and distance travelled during the test; method of averaging the measuring windows (MAW – moving average windows), also in the literature called EMROAD method, which determines the measurement windows (on the basis of carbon dioxide emissions from the WLTC test) and on its basis determines the road emission in RDE test; generalized method of instantaneous power (Power Binning), known in the literature as CLEAR – Classification of Emissions from Automobiles in Real driving, determines road emissions on the basis of generalized instantaneous power during the RDE test.
This paper summarizes the recent and ongoing work on real driving emissions of several automobiles with ordinary, non-flexible-fuel spark ignition engines, powered by alcohol-gasoline blends with higher concentrations of ethanol, n-butanol and isobutanol. On a Ford Focus automobile with a direct injection EcoBoost engine, powered by gasoline and its blends with 15% ethanol, 25% n-butanol and 25% isobutanol, particle size distribution were measured with an on-board fast mobility particle sizer along a 55 km route. Particle emissions were moderately reduced by ethanol and considerably by both butanol blends. On a Śkoda Fabia and Śkoda Felicia cars with indirect injection engines, powered by blends with higher concentrations of ethanol, n-butanol and isobutanol, particle emissions measured by a miniature on-board system were examined over a 13 km route. Blends of 30% and 50% of butanol had no or slightly positive effect on particle emissions. Blends of 70% ethanol and 85% n-butanol and 85% isobutanol, used with an auxiliary engine control unit, had no or slightly positive effect on particle mass, and reduced total particle length (roughly corresponding to lung deposited surface area) by about one half.
This paper presents the results of tests conducted in real traffic conditions in a mountainous area, taking into account the natural topography characteristics. The tested vehicle was of SUV type (Sport Utility Vehicle) with gasoline and Diesel engine, complying with emission standard Euro 5. Using the portable system for measurement of harmful substances, measurements of pollution emissions were conducted. The results obtained confirmed the substantial changes in the emission of harmful components of exhaust fumes with the change of the road grade. In all considered cases, it was confirmed that with the increasing route grade, the road emissions of all harmful components of exhaust fumes increase, however this increase varies for different pollutants. The most sensitive for spark ignition engines is emission of particulate matter, which is associated mainly with the compression ignition engines. For small changes of the road grade, the most sensitive seems to be road emission of carbon monoxide, for gasoline engines emission of particulate matter is specific, first, to all diesel engines, increase of the road grade to 10% caused on average twofold increase in the emission of harmful components of exhaust gases.
In the assumptions, regarding to the transport policy both at the level of country and Europe there is the concept of sustainable development of transport. Warsaw University of Technology in cooperation with Poznan University of Technology performs research work concerning the shaping of environmentally friendly transport system – Project EMITRANSYS. In this project, one of the conditions is to reduce exhaust emissions by means of transport. The paper presents the reasons for the testing of the exhaust emissions under Real Driving Emissions testing (RDE). Research potential of Institute of Combustion Engines and Transport at Poznan University of Technology in the area of road testing of passenger and heavy-duty vehicles has been presented in the paper. Example test results have been shown in the aspect of the emission-related classification of vehicles. The major challenge of worldwide emission standards, engine operating parameters in various emissions tests, the test potential under real operating conditions, the view of the analyser for on-road emission testing of vehicles, the test results for road emission of CO, HC and NOx, detailed characteristics of the averaged particle number for the entire test run (vehicles with different mileage and different emission class) for: Euro 4 class and 75,000 km; Euro 4 class and 500,000 km; Euro 5 class and 75,000 km; Euro 5 class and 500,000 km are presented in the paper.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.