Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Ramberg-Osgood
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the current research, a torsion of isotropic prismatic rods with elastic–plastic behavior under non-linear hardening behavior, such as Swift, Voce, and Ramberg-Osgood relations, is investigated with the method of fundamental solutions. Based on the Saint-Venant displacement assumption and deformation theory of plasticity for the stress-strain relation, the non-linear boundary value problem for the stress function is formulated. The purpose of the current research is study the elastic–plastic torsion problem with non-linear hardenings in a new simple form and solving the presented equations with the method of fundamental solutions and radial basis functions. The non-linear torsion problem is solved by means of the Picard iteration method. The proposed algorithm is based on solution of the linear Poisson equation at each iteration step.
EN
In this paper, the finite element formulation of a beam and shell clement for numerical modeling of thin-walled aluminum made beam-like structures has been described. Modern thin-walled beam-like members made up of aluminum arc used extensively in the construction industry because of their characteristic features like lightness, rccy c lability, corrosion resistance and, ease of workability. The constitutive behavior of aluminum alloys is different from the structural steel, especially in plastic deformation range. In the case of aluminum alloys, progressive yielding is seen which can not be modeled with normal elasto-plastic material model with isotropic hardening. Having a better constitutive model leads to a more accurate structural behavior in case of extreme loading and failure of the structure and also determination of the load carrying capacity. The Ramberg-Osgood constitutive law is most popularly used to model the elasto-plastic behavior of aluminum material. Here the material model based on Ramberg-Osgood law is implemented in a beam and a shell element, results are compared with the available experimental results illustrating the validity and the application of the formulation in the analysis of aluminum structures.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.