Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  RFI sources
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this article, we describe and compare several sources of the nonlinear of Radio Frequency Interference (RFI) based on classification methods. It is very important to characterize and understand the nature of interference in as much of the candidate spectrum as possible. Preliminary analysis has been done in 2011. As data sizes of observations grow with new and improved solar monitoring system, the need for completely automated, robust methods for RFI mitigation is highlighted. The current status of RFI noise level is being compared at two different sites (i) indoor and (ii) outdoor. The main objective is to evaluate and find the best range of low frequency in MHz for the solar monitoring purpose. Our findings are consistent with those of previous studies. There is not much different in terms of the sources of RFI. However, the level of RFI is become increase. Based on the results, it was found that the distribution of RFI sources in indoor site is in the range from -(80-105) dBm. A strong and moderate RFI can be identified in the range of -100 dBm. The dominant sources in this region are due to the fixed mobile signal with 10 points of this signal from 1-2000 MHz. If we compare with outdoor site, the distribution of RFI sources in indoor site is in the range from -(75-105) dBm. It means that the signal of noise is larger compared with indoor site. While new sources strive to remain the increasing of RFI signal levels, numerous factors interact to influence the pattern of this noise. Reporting to the authoritative body should be made to make sure the allocation of the solar monitoring frequency region was not used by other applications. This work is a current scenario of the nonlinear RFI level at our site.
EN
In this article, we have recognized a Radio Frequency Interference (RFI) sources that can potentially affect for radio astronomical observation. The main objective of this surveying is to test and qualify the potential of radio astronomical sources that can be observed in Malaysia generally. Analysis process focuses on the high sources that contribute the pollution and the significant region that can be considered for astronomical purpose beginning 1-2000 MHz. It was found that 13 individual sources contribute as a noise and mostly are telecommunication and radio navigation applications. We then compared of the RFI profiles based on three different periods in order to observe the variety of the signals. The main regions that still excellent to do an observation are: 13.36 -13.41 MHz (solar), (25.55-25.67) MHz (Jupiter) and (37.50-38.25) MHz (Continuum) respectively. This work is also an initiative of the International Space Weather Initiative (ISWI) project where Malaysia is one of the countries that involve in e-CALLISTO (Compound Astronomical Low Cost Low Frequency Transportable Observatory) network project. Some suggestions are recommended in order to improve the quality of the radio frequency profile.
EN
Continuous observation of solar radio burst in CALLISTO network was started since 2002 with Blein Switzerland is the first site that launched the system. Since then, there are more than 35 sites around the world that monitor the Sun activity within 24 hours until 2014. However, there is an issue of Radio Frequency Interference (RFI) that need to be considered. This noise is a major obstacle when performing observation with CALLISTO system. We selected 4 sites as preliminary analysis to analyze in detailed at a specific frequency which is very important in solar burst monitoring. The selected sites are (i) Blein, Switzerland (ii) Mauritius (iii) KASI Korea and (iv) ANGKASA, Malaysia. The regime narrow band that we focused are from (i) 72 – 75 MHz (ii) band 145 – 153 MHz (iii) 240 – 250 MHz (iv) 320 – 330 MHz (v) 406 – 410 MHz. The results of the sources of the RFI also will be highlighted. This work is was part of a larger study which focuses on a specific region that can be used for detailed investigation of solar burst. This issue of Radio Frequency Interference (RFI) needs a dialogue and interactions between different actors and networks.It is hoped that the analysis will help the solar physicist to choose a better data.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.