Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  RCPT
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This research paper explains in detail how well regular concrete works and how well concrete with fly ash and ground granulated blast furnace slag (GGBS) as a substitute for cement. Through a series of experiments, the objective of the study is to perform an experimental approach that promote the usage of partial replacement-based concrete that can replace the conventional concrete and to promote the sustainable development. a dedicated methodology is developed for the study, focussing on the mechanical and durability properties of the materials with inducing sustainable materials. The methodology study examines at the mechanical properties, durability, and microstructural attributes of the concrete blends. Cement concrete specimens with binder ratios (%) of 0.3, 0.4, and 0.5 were tested for compressive strength, rapid chloride permeability, SEM, and XRD at 28, 56, and 90 days. Fly ash and GGBS were used to partially replace cement at 0% to 70% for all binder ratios by weight of cement. There were optimal replacement percentages for each binder ratio and fly ash and GGBS partially substituted concrete had similar or enhanced mechanical properties to conventional concrete. The novelty of the study is to incorporate microstructure analysis for the same samples that shall enable to analyse the behaviour of the partial replaced materials with conventional concrete. In connection with the results, the study had found lower RCPT values in partial replacement concrete specimens, fly ash and GGBS increased chloride ion resistance. SEM and XRD analyses revealed the concrete mixtures' microstructural properties and phase composition, showing how supplementary cementitious materials refine pore structure and provide durable hydration products. This study shows that fly ash and GGBS can improve concrete performance and reduce impact on environment and applications in construction.
EN
Appropriate assessment of spatial variation of soil and hydrogeological conditions is a crucial issue in recognizing foundation soil. The best methods to achieve this goal are those that supply continuous rather than scattered data on soil medium variation. Electrical resistivity was measured with the resistivity cone penetration test (RCPT) and electrical resistance tomography (ERT) with electrodes spaced at 1 and 3 m in order to discriminate peat layers beneath low-resistivity clays. Soil conditions determined by drillings and ERT were not concordant, therefore resistivity modelling of the medium was conducted based on geological units determined by drillings and values of apparent resistivity obtained from RCPT. The strata thickness and electrode spacing is shown to have influence on resistivity imaging in complex soil conditions.
EN
Nano technology is an emerging field of interest for civil engineering application. Among the nano materials presently used in concrete, nano-silica possess more pozzolanic nature. It has the capability to react with the free lime during the cement hydration and forms additional C-S-H gel giving strength, impermeability and durability to concrete. Present paper investigates the effects of addition of nano silica in normal strength concrete. Three types of nano-silica in the form of nano suspension having different amount of silica content have been investigated. Mix design has been carried out by using particle packing method. X-Ray diffraction (XRD) analysis has been carried out to find the chemical composition of control concrete and nano modified concrete. Further, experimental investigations have been carried out to characterize the mechanical behaviour in compression, tension and flexure. It has been observed that the addition of nano-silica in normal strength concrete increased the compressive strength and decreased the spilt tensile strength and flexural strength. Also, Rapid chloride permeability test (RCPT) has been conducted to know the chloride permeability of control concrete, nano modified concrete, and nano coated concrete. It has been observed that the chloride permeability is less for nano coated concrete.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.