Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  RCP8.5
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Stały rozwój terytorialny miast jest drugim, obok zmiany klimatu, czynnikiem pociągającym za sobą istotne pogorszenie jakości ich środowiska. Tendencji tej ulega m.in. klimat lokalny obszarów zurbanizowanych, co przejawia się przede wszystkim wzrostem temperatury powietrza oraz zakłóceniem reżimu opadowego. Zmiany klimatu mają duży wpływ na sektor budownictwa zarówno na etapie powstawania, jak i eksploatacji inwestycji oraz – poprzez coraz trudniejsze warunki mikro-i bioklimatyczne – na warunki życia mieszkańców miast. W artykule przedstawiono historyczny, aktualny i prognozowany stan klimatu w Warszawie rozpoznany z punktu widzenia oddziaływania na budownictwo (w kontekście tzw. Umownych Kategorii Klimatu) i komfort życia mieszkańców obszarów zurbanizowanych. Do analiz wykorzystano wyniki obserwacji prowadzonych na stacji meteorologicznej Warszawa–Okęcie w okresie 1971-2020 oraz symulacji dla okresu 2021-2070 według scenariuszy RCP4.5 i RCP8.5, udostępnione w bazie danych METEONORM 8.0. Zarówno historyczne, jak i prognozowane cechy klimatu Warszawy wskazują, że największe zmiany dotyczą warunków termicznych. Wartości temperatury powietrza od wielu lat systematycznie wzrastają (średnio o około 0,5°C/10 lat) i proces ten będzie trwał w przyszłości. Wyraźnie mniejsze zmiany mają miejsce w przypadku reżimu opadowego i wiatrowego. Obserwowana zmiana klimatu stanowi duże wyzwanie dla mieszkańców i władz miasta oraz architektów i urbanistów. Artykuł zawiera kilka propozycji rozwiązania tych problemów poprzez zmiany w zagospodarowaniu przestrzeni miejskich.
EN
The constant territorial development of cities is the second factor, apart from climate change, which entails a significant deterioration in the quality of their environment. This tendency is followed by the local climate of urbanized areas, which is manifested primarily by the increase in air temperature and the disruption of the precipitation regime. Climate change has a major impact on the construction sector, both at the stage of planning and operation of investments, and – trough increasingly difficult micro- and bioclimatic conditions – on the living conditions of city dwellers. The article presents the historical, current and projected state of the climate in Warsaw recognized from the point of view of its impact on construction (through analysis of so-called Conventional Climate Categories) and on the comfort of life of the residents of urban areas. The results of observations conducted at the Warszawa–Okęcie meteorological station in the period 1971-2020 and simulations for the period 2021-2070 according to the RCP4.5 and RCP8.5 scenarios, available in the METEONORM 8.0 database, were used for the analysis of so-called Conventional Climate Categories as well as their influence on micro- and bioclimatic conditions and on the living conditions of city dwellers. Both historical and projected features of Warsaw’s climate indicate that the greatest changes concern thermal conditions. Air temperature values have been steadily increasing for many years (on average by about 0.5°C/10 years) and this process will continue in the future. Significantly smaller changes take place in the case of precipitation and wind regimes. The observed climate changes pose a great challenge for the inhabitants and city authorities, as well as for architects and urban planners. The article contains several proposals for solving these problems through changes in the development of urban spaces.
EN
The inequality between available water supplies and growing water demand from diverse sectors, as well as the predicted climate changes are putting significant pressures on Egypt’s food security. There is a nation-wide demand for new scientifically proven on-farm practices to boost water productivity of major food crops. The objective of this study was to explore the use of various deficit irrigation schemes to improve water productivity (WP) of tomato cultivated in Egypt under distinct climate change scenarios, RCP4.5 and RCP8.5, in three time-steps of the reference period (2006-2016), 2030s, and 2050s. The AquaCrop model was used to simulate the influence of climate change on the tomato crop, as well as two deficit irrigation application schemes for the full growing season and the regulated application for the initial and maturity crop stages. With the same irrigation method, the predicted WP increased in a general pattern across all climate change scenarios. The combination of irrigation schedule with the 80% deficit irrigation can enhance WP near the optimum level (approximately 2.2 kg∙m-3), especially during early and mature stages of the crop, saving up to 16% of water. The results showed that the expected temperature rise by 2050s would reduce the crop growth cycle by 3-11 days for all irrigation treatments, resulting in a 1-6% decrease in crop evapotranspiration (ETc) and affecting the dry tomato yield with different patterns of increase and decrease due to climate change.
EN
Soil erosion is closely related to climate changes, because changes to temperature and precipitation regimes may alter the erosivity of rainfall. The present study aimed to project future soil erosion phenomena in the Vjosa River Basin (VRB) using climate projections under the Representative Concentrations Pathway (RCP) 4.5 and 8.5 scenarios. SimCLIM model was used to perform the climate projection for the years 2035 and 2050, based on historical temperature and precipitation data (2000–2015). This investigation was carried out by using Erosion Potential Method EPM to estimate the effects of climate change on soil erosion in Vjosa River Basin, Albania. Results show an increase in average min and max annual temperature for both scenarios RCP4.5 and 8.5 by the end of 2050. The evaluation of the monthly precipitations for all RCPs reveals a likely decrease in summer precipitation, and a slight positive trend of winter precipitation for all time periods up to 2050. An increase in terms of eroded material and specific eroded material was estimated from the results of RCP4.5 and RCP8.5 scenarios. Thus, it can be stated that the study area has and will have a moderate erosion risk under these climate conditions.
EN
We are motivated to study the exploitation of marine energy as a renewable resource because of society's ever-increasing energy demands, and a concomitant need to reduce greenhouse gas emissions. Additionally, climate-related variations in wave energy should be investigated in order to ensure the stability of its long-term availability. Here, we investigate the potential for wave energy in the Persian Gulf along the southern coasts of Iran. To do so, we have applied the Mike SW numerical model and ECMWF wind field data for a 30-year study, from 1988 to 2017. For this purpose, wave energy was evaluated at six points in the western, northern, southern, and eastern parts of the Persian Gulf. To assess the impacts of climate change, we also consider the wave regime from 2070 to 2099 (for 30 years) following IPCC RCP4.5 and RCP8.5 climate change scenarios. Our findings suggest that in the present climate, seasonal variations in the mean wave parameters (i.e. wave energy, wave period, and significant wave height) correspond to the lowest wave energy in the summers, and highest in the winters. In the future climate change scenarios, energy level variations generally have similar patterns, with slight modulations in some local areas.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.