Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  RC network
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, an active implementation of a differential voltage current conveyor (DVCC) based on a low-pass filter operating in the fractional order domain is presented. The transfer function for a fractional order system is dependent on the rational approximation of sα. Different methods used for calculating the rational approximation, including Carlson, Elkhazalil, and curve fitting, are evaluated here. Finally, to validate the theoretical results, a fractional order Butterworth filter is simulated in the Pspice environment using the 0.5 micrometer CMOS technology with an R-C network-based fractional order capacitor. Additionally, using the Monte Carlo analysis, the impact of current and voltage faults on DVCC response is investigated. It has been inferred that realization with a wider bandwidth is possible.
EN
The lumped capacitance method is widely used in dynamic modelling of buildings. Models differ in complexity, solution methods and ability to simulate transient behaviour of described objects. The paper presents a mathematical description of a simple 1R1C thermal network model of a building zone. Four numerical methods were applied to solve differential equation describing its dynamics. For validation purposes two test cases (600 and 900) from the BESTEST procedure were used. In both cases detailed results were given. Better ability of the simulation model to reproduce transient behaviour of the modelled buildings was noticed in case of the lightweight object (case 600). Annual heating and cooling demand was within the reference range for heavyweight one (case 900). The kind of the computation method had no significant effect on simulation results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.