Struktury bimetaliczne składające się z katalizatora platynowego oraz innego metalu o właściwościach katalitycznych (np. Ru, Co, Pd, Cr, Ir, Ni) są obecnie intensywnie badane pod kątem ich zastosowania w konstrukcji ogniw paliwowych z elektrolitem polimerowym (PEMFC). Szczególną uwagę zwraca się przy tym na poprawę właściwości elektrokatalitycznych struktur bimetalicznych w porównaniu z czystą Pt, wydłużenie czasu pracy ogniwa oraz ograniczenie ilości stosowanej Pt. Układ taki, dzięki efektowi synergii, często wykazuje większą aktywność katalityczną lub ma lepsze parametry użytkowe niż czysta Pt. Na przykład dodatek Ru zmniejsza zatrucie katalizatora tlenkiem węgla (II), dzięki czemu stop Pt-Ru lepiej sprawdza się jako katalizator anodowy w ogniwach zasilanych metanolem lub wodorem zanieczyszczonym CO. W pracy są prezentowane wyniki badań bimetalicznych, wielowarstwowych struktur typu Pt/Pd osadzonych metodą laserowej ablacji laserem impulsowym (PLD) na nanoporowatej powierzchni elektrod wykonanych z tkaniny węglowej ELAT LT2500W (E-Tek). Wielowarstwowe struktury typu Pt/Pd były wytwarzane w warunkach wysokiej próżni przez naprzemienne osadzanie Pt oraz Pd laserem impulsowym typu ArF pracującym na długości fali 193 nm. Właściwości elektrokatalityczne osadzonych struktur wielowarstwowych typu Pt/Pd badano w zespole membrana-elektrody (MEA – Membrane Electrode Assembly) ogniwa paliwowego zasilanego H2 i O2 i porównywane z właściwościami warstw osadzonych z czystej Pt. Wykonane zespoły membrana-elektrody miały warstwy katalityczne o różnych proporcjach masowych Pt do Pd oraz o różnej łącznej masie metali aktywnych. Zaobserwowano silny wpływ proporcji masowej Pt do Pd na wydajność MEA oraz efektywność wykorzystania katalizatora. Największą wydajność miały MEA z warstwami o proporcji masowej Pt do Pd wynoszącej około 3,3. Charakteryzowały się one również ponad dwukrotnym wzrostem efektywności wykorzystania katalizatora bimetalicznego (zdefiniowanej jako moc uzyskiwaną z 1 mg całkowitej masy katalizatora) w porównaniu z warstwami wykonanymi z czystej Pt.
EN
Bimetallic structures consisting of the platinum catalyst and another metal with catalytic properties, such as Ru, Co, Pt, Cr, Ir, Ni, have been recently intensively investigated for applications in Polymer Electrolyte Membrane Fuel Cells (PEMFC). Of particular interest is the improvement of the electrocatalytic properties of the bimetallic structure in comparison to Pt, the extension of the operating life of the cell, and the reduction of the amount of Pt used in the cell. Thanks to the synergy effect, a bimetallic system often shows a higher catalytic action or better utility parameters than pure Pt. For instance, Ru reduces the catalyst’s poisoning by carbon (II) oxide. Thanks to this alloy Pt-Ru is an anode catalyst of choice for fuel cells fueled with methanol or CO-containing hydrogen. In this work, results of investigations of bimetallic, multilayer Pt/Pd structures deposited by the PLD technique on the surface of gas diffusion electrodes formed from the nanoporous layer covered carbon cloth ELAT LT2500W (E-Tek) are presented. The Pt/Pd structures were fabricated under high vacuum conditions by consecutive depositions of Pt and Pd layers using a ArF pulse laser at 193 nm wavelength. The electrocatalytic properties of produced Pt/Pd layers were investigated in the Membrane Electrode Assembly (MEA) of a fuel cell supplied with H2 and O2 and compared to the properties of catalytic layers formed by Pt alone. Membrane electrode assemblies were produced with layers having different proportions of Pt to Pd, and different total noble metal mass. A strong relationship between the Pt to Pd ratio and the efficiency of the investigated MEA and the catalyst utilisation was observed. The highest efficiency an MEA with a weight ratio of Pt to Pd of about 3.3 was observed. This MEA also showed a more than double catalyst utilisation (defined as a power produced from 1 mg of catalyst mass) compared to Pt alone.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.