Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Pseudocalanus elongatus
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This work presents numerical simulations of the time-dependent vertical distributions of phytoplankton, microzooplankton, Pseudocalanus elongatus, early juvenile herring (Clupea harengus) and two nutrient components (total inorganic nitrogen and phosphate) using the 1D-Coupled Ecosystem Model with a high-resolution mesozooplankton (herbivorous copepods) module for P. elongatus and a simple prey-predator model for early juvenile herring C. harengus. This model was discussed in detail in Part 1. The calculations were done for one year (1999) for astation in the Gdańsk Deep (southern Baltic Sea). The results of the simulations were compared with the mean concentrations of nutrients, phytoplankton and zooplankton recorded in situ. The differences between the calculated and mean recorded values of nutrients and phytoplankton are c. 5-30% and depend on the month and depth for which the calculations were done. However, the calculated depth-integrated biomass of P. elongatus differs from the mean recorded value. This difference ranges from 30 to 50% at the end of May. The 1DCEM model can be used to forecast ecological changes in the southern Baltic Sea.
EN
The paper presents a one-dimensional Coupled Ecosystem Model (1DCEM) consisting of three submodels: a meteorological submodel for the physics of the upper layer and a biological submodel, which is also driven by output from the physical submodel. The biological submodel with a high-resolution zooplankton module and a simple prey-predator module consists of seven mass conservation equations. There are six partial second-order differential equations of the diffusion type for phytoplankton, microzooplankton, mesozooplankton, fish, and two nutrient components (total inorganic nitrogen and phosphate). The seventh equation, an ordinary differential equation, describes the development of detritus at the bottom. In this model the mesozooplankton (herbivorous copepods) is represented by only one species - Pseudocalanus elongatus - and is composed of 6 cohorts. The fish predator is represented by 3 cohorts of early juvenile herring Clupea harengus. Hence, the biological submodel consists of an additional twelve equations, six for weights and six for the numbers in 6 cohorts of P. elongatus, and three equations for the biomasses of 3 predator cohorts. This model is an effective tool for solving the problem of ecosystem bioproductivity and was tested in Part 2 for one partcular year.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.