Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Pringsheim limit point
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On asymptotically statistical equivalent sequences
EN
This paper presents the following definition which is a natural combination of the definition for Asymptotically equivalent and Statistically limit. Two nonnegative sequences [x] and [y] are said to be asymptotically statistical equivalents of multiple L provided that for every e > 0, limn 1/n{the number of k < n : |xk/yk-L\ > e} = 0 (denoted by x Sl y), and simply asymptotically statistical equivalent if L = 1. In addition, there are also statistical analogs of theorems of Poyvanents in [5].
2
Content available remote Characterization for the limit points of stretched double sequences
EN
This paper investigates the effect of four dimensional matrix transformation on new classes of double sequences. Subsequences and stretchings of a double sequence are denned, and these definitions are used to present a four dimensional analogue of D. Dawson's Copy theorem for stretchings of a double sequence. In addition, the multidimensional analogue of D. Dawson's Copy theorem is used to characterize convergent double sequences using subsequences and stretchings.
3
Content available remote A characterization for the limit points of double sequences
EN
In 1944 R.P Agnew characterized limit points of single dimensional sequences by provIng the following: Let A be regular and let xn be a bounded complex sequence, then there exIsts a subsequence yn of xn such that the set Ly of limit points of the transform Yn of yn includes the set Lx of limit points of the sequence xn . In this paper we shall use the definition of Pringsheim limit points in [6] to present a multidimensional analogues of Agnew result in [1].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.