Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Princeton Ocean Model
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Numerical simulation experiments with a high-resolution circulation model were carried out to study nutrient transport from different depths to the surface 10-m layer during an upwelling event along the northern coast of the Gulf of Finland in July 1999. The initial nutrient distribution is based on field measurements performed in the north-western part of the Gulf. Wind forcing covering the period of the upwelling along the northern coast was turned through 180° to simulate an upwelling along the southern coast. The simulation results showed that the main phosphorus transport to the upper 10-m layer occurred from depths shallower than 30 m for the upwelling events along both the northern and the southern coasts. Nitrogen transport to the upper 10-m layer was the largest from depths of 40-55 m for the upwelling along the northern and 40-65 m for the upwelling along the southern coast. Simulated cumulative volume transports to the upper 10-m layer from different depths showed that the contribution from deeper layers was larger in the case of the upwelling along the southern coast. The reduction of wind stress had a bigger influence on water transport from the deeper layers.
EN
The study focuses on the hydrodynamic processes in the southern Baltic Sea, with special interest in the Stolpe Channel - the only deep water connection between Bornholm Basin to the west and Gdansk and Gotland Basins to the east. The Channel is an area of strong interactions of wind- and density-driven currents that may lead to a complex flow structure. A three-dimensional numerical model was applied to an analysis of processes mentioned above. Three model versions of different spatial resolution (5, 3 and 1Nm) were used to investigate an influence of this parameter on the model results. The simulations were performed for four main wind directions, for a variable in time wind speed. It was shown that water circulation in the southern Baltic is to a high degree dependent on local anemobaric conditions. The results confirm the hypothesis of Krauss and Brugge that the flow in the Channel is opposite to the wind direction. Numerical grid step can have a decisive influence on the modeled circulation patterns, especially when barotropic andbaroclinic flow components counteract. In such situations - when the flow is bidirectional and mesoscale eddies are generated - high resolution of the model is particularly important.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.