Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Prąd Labradorski
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Some of the sea currents show strong activity in climate formation and this fact is well known. Their activity represented as a time function is not stable but proves to be changeable. For this reason it seems quite reasonable to introduce appropriate indexes which could be used to characte-rise activity of a given current and, in an indirect way, to describe heat masses carried with this current. The aim of this article is to present an index which characterises the climatic activity of the Labrador Current. The basis to create such an index is the number of icebergs carried with this current. In consecutive ice seasons (October - September) this number passed south of 48°N of E from New Foundland (data from ?International Ice Patrol?). Changeable from year to year number of icebergs carried to the North Atlantic (see fig. 2) primarily represents the increase or decrease in the intensity of the Labrador Current. As the number of icebergs moved to the Atlantic comprises random component, which is very high, in order to create the index a logarythm was used to reduce the changeability of the amplitude. Formula [ 1 ] has been proposed to be used to calculate the index of intensity of the Labrador Current (WPL): WPL= (ln(G + 1))/2 where: ln - natural logarythm (base = e), G - the number of icebergs noted in a given ice season. Values of WPL index calculated in this way dated in January in ice season over a period 1900?2002 have been presented in Table 2 and their course in Fig. 3. The value of WPL indicates quite strong correlation with both winter (DJFM) and annual NAO indexes (r ~ 0.5), however the analysis showed that NAO is not the only element having influence on the Labrador Current activity. The analysis, carried out at random, of relations between the values of WPL and different climatic and hydroclimatic elements indicated to the fact that most of the relations are shifted/delayed in time - changeability of WPL takes place earlier than changes in these elements. For instance, the air temperature in August the following year in most area of Poland proves to have not too strong but clear correlation with the changes in WPL. Numerous correlations between WPL and occurring later monthly values of air temperature and monthly sums of precipitation at stations in the Atlantic sector of Arctica have been observed. The size of sea ice cover in the Barents Sea in the following year has shown especially high correlation with the changeability of WPL (the changeability of WPL explains ~50% of changeability in the area of the sea ice cover of the Barents Sea in January the following year). In this way WPL seems to be potentially useful in long term predictors of weather forecasts. The delayed activity of WPL can be explained by means of the following cause- and-effect chain of actions: winter (DJFM) atmpspheric circulation over the Davis Strait and the Labrador Sea has influence on the activity of the Labrador Current - the activity of the Labrador Current has influence on the extent and size of the anomalies in SST in the Labrador Sea and in NW part of the Atlantic (MJJA) - the presence of such anomalies in SST has a modifying effect on the atmospheric circulation occurring in the following autumn (SON) and winter (DJFM).
EN
The Barents and Greenland seas are characterised by great seasonal and interannual changeability in the ice cover. Research carried out by many authors prove that the ice regime of these seas is influenced, to a great extent, by large scalę changes in atmospheric circulation and by the ocean surface circulation of the North Atlantic and the Arctic Ocean. Such correlations arę mainly of teleconnection type and show phase shifts (among others Mysak 1995, Deser et. al. 2000). One of the elements of the sea surface circulation of the Atlantic Ocean is the Labrador Current. The intensity of this current changes in time. In the periods when the Labrador Current becomes strong, its waters form vast anomalies in the sea surface temperaturę in the NW Atlantic. Further they spread eastwards along the north edge of the North Atlantic Current and with some delay, have influence on the atmospheric circulation in the central and east part of the North Atlantic (Marsz 1997, 1999). The way how the changes in the intensity of the Labrador Current influence the climate nas not been discovered yet. The intensity of this current can be defined by means of an index (WPL - Labrador Current Intensity lndex) established by Marsz (Internet). This work examines if there is direct correlatton between the changes in the sea-ice cover of the Barents and Greenland seas and the variability of the intensity index of the Labrador Current. The research madę use of homogenous data concerning a week-old sea ice cover observed at the analysed seas and the values of intensity index of the Labrador Current in the period January 1972 until December 1994 given by Marsz (obtained from NIC and NCDC - Asheville). It has been stated that over the examined 23-year period (1972-1994) the mean monthly the sea-ice cover in the Barents Sea indicates to strong correlation with the changes in the value of the intensity index of the Labrador Current (Table 1, Fig. 1). The changes in WPL result in the rhythm of changes in the sea-ice cover of the Greenland Sea only in winter (Table 2, Fig. 2). The occurrence of anomalies in the sea surface temperatures in the region SE of New Foundland seem to have great influence on the later formation (after few or several months) of the sea-ice cover in the Barents Sea (Fig. 1, 3. 4, formula 1-3). Changes in the intensity of Labrador Current in a given year explain 30% up to 50% changeability of the sea-ice cover developing in that sea from January to July in the following year (Table 1, Fig. 3). The area of the sea-ice cover in the Greenland Sea is mainly influenced by the intensity of the Transpolar Drift and East-Greenland Current transporting considerable amount of ice from the Arctic Ocean. Only during fuli winter season, from January to March, the correlation between the intensity of the Labrador Current and the sea-ice cover reaches statistical significance (Table 2). The results of the carried out analysis point to significant influence of advection factor on the sea-ice cover of the examined seas. In both analysed seas the phenomenon is connected to both the character and intensity of the Atlantic waters flow and to greater frequency of occurrence of specified forms of air circulation in the region of central and eastern part of the North Atlantic, possible at a given distribution of anomalies in surface waters of the North Atlantic.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.