This paper introduces a methodology to derive explicit power series approximations for the limit cycle periodic solutions of the Hopf bifurcation in autonomous discrete delay differential equations (DDE). The procedure extends the methodology introduced by Casal and Freedman in 1980, by providing a detailed algorithm that iteratively performs systematic calculations up to any desired order of approximation, ensuring a specific error tolerance for any nonlinear DDE presenting a Hopf bifurcation. The methodology is applied to three relevant delay-differential models to illustrate its features: a recently introduced car-following mobility model that explains oscillations in road traffic, a SIR epidemic model for propagation of diseases with temporary immunity, and a simplified macroeconomic system to model business cycles.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.