Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Plasma Electrolytic Oxidation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Plasma Electrolytic Oxidation (PEO) known also as Micro Arc Oxidation (MAO) process is widely used to fabricate porous coatings on titanium and its alloys mainly in water- and acid-based solutions to different applications, e.g. in biomaterials, catalysts, and sensors. In the present paper, the SEM, EDS, and XPS results of porous coatings obtained by PEO treatment on titanium in electrolytes based on concentrated phosphoric H3PO4 acid with calcium nitrate tetrahydrate Ca(NO3)2·4H2O, or magnesium nitrate hexahydrate Mg(NO3)2·6H2O, or zinc nitrate hexahydrate Zn(NO3)2·6H2O for 3 minutes at 200 Vpp (peak to peak) with frequency of 50 Hz, are presented. Based on EDS results, the Ca/P, Mg/P, and Zn/P ratios, which equal to 0.95, 0.176, and 0.231, respectively, were found out. The XPS studies of the top 10 nm of the porous layer clearly indicate that it contains mainly phosphates (PO4 3− and/or HPO4 2− and/or H2PO4 −, and/or P2O7 4−) with titanium (Ti4+) and calcium (Ca2+) or magnesium (Mg2+), or zinc (Zn2+).
EN
In the paper, characteristics of porous coatings enriched in copper on pure Titanium and its alloys (NiTi, Ti6Al4V, TNZ, Ti2448) as well as on niobium obtained by Plasma Electrolytic Oxidation (PEO) in electrolyte containing H3PO4 within Cu(NO3)2, are presented. All obtained surfaces of PEO coatings have different shapes and diameters of pores. The binding energies of main peaks for titanium Ti2p3/2, niobium Nb3d5/2, zirconium Zr3d5/2, phosphorus (P2p) and oxygen (O1s) suggest the presence of titanium Ti4+, niobium Nb5+ and zirconium Zrx+ (x≤2) as well as PO4 3–.
EN
The SEM and EDS results of porous coatings formed on pure titanium by Plasma Electrolytic Oxidation (Micro Arc Oxidation) under DC regime of voltage in the electrolytes containing of 500 g zinc nitrate Zn(NO3)2·6H2O in 1000 mL of concentrated phosphoric acid H3PO4 at three voltages, i.e. 450 V, 550 V, 650 V for 3 minutes, are presented. The PEO coatings with pores, which have different shapes and the diameters, consist mainly of phosphorus, titanium and zinc. The maximum of zinc-to-phosphorus (Zn/P) ratio was found for treatment at 650 V and it equals 0.43 (wt%) | 0.20 (at%), while the minimum of that coefficient was recorded for the voltage of 450 V and equaling 0.26 (wt%) | 0.12 (at%). Performed studies have shown a possible way to form the porous coatings enriched with zinc by Plasma Electrolytic Oxidation in electrolyte containing concentrated phosphoric acid H3PO4 with zinc nitrate Zn(NO3)2·6H2O.
EN
The purpose of this work is to produce and characterize (chemical composition and roughness parameters) porous coatings enriched in calcium and phosphorus on the titanium (CP Titanium Grade 2) by plasma electrolytic oxidation. As an electrolyte, a mixture of phosphoric acid H3PO4 and calcium nitrate Ca(NO3)2·4H2O was used. Based on obtained EDS and roughness results of PEO coatings, the effect of PEO voltages on the chemical composition and surface roughness of porous coatings was determined. With voltage increasing from 450 V to 650 V, the calcium in PEO coatings obtained in freshly prepared electrolyte was also found to increase. In addition, the Ca/P ratio increased linearly with voltage increasing according to the formula Ca/P = 0.035·U+0.176 (by wt%) and Ca/P = 0.03·U+0.13 (by at%). It was also noticed that the surface roughness increases with the voltage increasing, what is related to the change in coating porosity, i.e. the higher is the surface roughness, the bigger are pores sizes obtained.
EN
The SEM and EDS study results of coatings obtained on titanium by Plasma Electrolytic Oxidation (PEO) in the electrolytes containing of 600 g copper nitrate in 1 liter of concentrated phosphoric acid at 450 V for 1 and 3 minutes, are presented. The obtained coatings are porous and consist mainly of phosphorus within titanium and copper. It was found that the time of PEO oxidation has impact on the chemical composition of the coatings. The longer time of PEO treatment, the higher amount of copper inside coating. The PEO oxidation of titanium for 1 minute has resulted in the creation of coating, on which 3 phases where found, which contained up to 13.4 wt% (9 at%) of copper inside the phosphate structure. In case of 1 minute PEO treatment of titanium, the 2 phases were found, which contained up to 13 wt% (8 at%) of copper inside the phosphate structure. The copper-to-phosphorus ratios after 1 minute processing belong to the range from 0.28 by wt% (0.14 by at%) to 0.47 by wt% (0.23 by at%), while after 3 minutes the same ratios belong to the range from 0.27 by wt% (0.13 by at%) to 0.35 by wt% (0.17 by at%). In summary, it should be stated that the higher amounts of phosphorus and copper were recorded on titanium after PEO oxidation for 3 minutes than these after 1 minute.
EN
The SEM and EDS results of coatings obtained on pure niobium and titanium alloys (NiTi and Ti6Al4V) by Plasma Electrolytic Oxidation in the electrolytes containing of 300 g and 600 g copper nitrate in 1 litre of concentrated phosphoric acid at 450 V for 3 minutes, are presented. The obtained coatings are porous and consist mainly of phosphorus within titanium and copper. For each coating, the Cu/P ratios were calculated. The maximum of that coefficient was found for niobium and Ti6Al4V alloy oxidised in the electrolyte containing 600 g of Cu(NO3)2 in 1 dm3 of H3PO4 and equaling to 0.22 (wt%) | 0.11 (at%). The minimum of Cu/P ratio was recorded for NiTi and Ti6Al4V alloys oxidised by PEO in electrolyte consisting of 300 g of copper nitrate in 1 dm3 of concentrated phosphoric acid and equals to 0.12 (wt%) | 0.06 (at%). The middle value of that ratio was recorded for NiTi and it equals to 0.16 (wt%) | 0.08 (at%).
7
Content available remote SEM and EDS analysis of nitinol surfaces treated by Plasma Electrolytic Oxidation
EN
In the paper, the surface layers formed on nickel-titanium alloy during Plasma Electrolytic Oxidation (PEO), known also as Micro Arc Oxidation (MAO), are described. The mixture of phosphoric acid and copper nitrate as the electrolyte for all plasma electrochemical processes was used. Nitinol biomaterial was used for the studies. All the experiments were performed under the voltage of 450 V and current density of 0.3 A/dm2. The main purpose of the studies was to achieve the highest amount of copper in the surface layer versus amount of the copper nitrate in phosphoric acid. The highest copper concentration was found in the surface layer after the PEO treatment in the electrolyte consisting of 150g Cu(NO3)2 in 0.5 dm3 H3PO4. The worst results, in case of the amount of copper in the NiTi surface layer, were recorded after oxidizing in the solution with 5 g Cu(NO3)2.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.