The paper presents results of SPINUA (Stable Point Interferometry over Unurbanised Areas) Persistent Scatterers Interferometry (PSI) processing chain to study Earth surface deformations along the SW coast of the Gulf of Gdańsk, along the SE part of the Baltic Sea. As the input for SPINUA techniques 40 descending ERS-1/2 SLC (Frame = 251, Track = 36) images from the period 1995-2001 has been used. The area of interest (AOI) includes few cities and several towns, villages and harbors. The low lying coastal areas of the SW part of the Gulf of Gdańsk are at risk of floods and marine erosion. The PSI results, however, did not reveal the presence of a regional scale, spatially consistent pattern of displacements. It is likely that any crustal deformations in the AOI simply do not exceed +2 mm/year, which is the velocity threshold we assumed to distinguish between moving and non-moving persistent scatterers (PS). Importantly, for the most part the urban areas of the main cities (Gdańsk, Gdynia and Sopot) results show ground stability. Nevertheless, significant downward movements up to several mm/year, are locally noticed in the Vistula river delta - alluvial plain system located in the coastal zone east of Gdańsk as well as in the inland area west of the Gdańsk city. Indeed, the highest subsidence rates (-12 mm/year) was observed in the Gdańsk petroleum refinery constructed on alluvial sediments. Thus the anthropogenic loading and consolidation of the recent deposits can locally be an important factor causing ground subsidence.
The paper presents the use of the Persistent Scatterers Interferometry (PSI) Synthetic Aperture Radar (SAR) data to determine magnitude of subsidence in area of the town ofWieliczka. The town is home to a unique salt mine, over 700 years old, one of the best known tourist attractions in Poland. Each year the mine is visited by about 1 million tourists from all over the world and in 1978 UNESCO placed it on its first International List of theWorld Cultural and Natural Heritage. There is direct evidence that the mining has been influencing stability of ground and buildings in the town, which is located above the mine. The application of the PSI SPINUA technique made it possible to identify large number of radar targets (with density exceeding 100 PS/km2), suitable for monitoring ground motion in the Wieliczka area. The results show continuous subsidence with average annual movements ranging from a few millimeter per year to 24 mm/yr in the period 1992–2000. The detected subsiding zone very well corresponds to the extent of the underground salt mine. There are also indications of possible connections between the mine-induced subsidence and the presence of the old large landslides occurring on the north-facing slopes south of the Wieliczka Salt Mine.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.