Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Pasternak's foundation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In engineering applications, composite structures supported by elastic foundations are being vastly utilized in various operating environmental conditions. The nonlinear hygrothermal effect on vibration analysis of a magnetostrictive viscoelastic laminated composite sandwich plate rested on two-parameter Pasternak’s foundations is studied in the present article. The material properties of the viscoelastic plate’s layers are considered based on the Kelvin–Voigt model. The governing equation system is derived according to Hamilton’s principle. The analytical solution is obtained to study influences of the hygrothermal change, half wave number, magnitude of the feedback control gain, aspect ratios, thickness ratio, and structural viscoelastic damping coefficients on vibration damping characteristics of the plate including the frequencies, the damping rate, and the deflection. The obtained results indicate that the natural frequency and deflection reduce with increasing the structural viscoelastic damping value. The plate takes a long time for suppressing its vibration due to increasing the hygrothermal factor.
EN
This paper presents a new model to consider the thermal effects, Pasternak’s shear foundation, transverse shear deformation and rotary inertia on vibration analysis of a single-walled carbon nanotube. Nonlocal elasticity theory is implemented to investigate the small-size effect on thermal vibration response of an embedded carbon nanotube. Based on Hamilton’s principle, the governing equations are derived and then solved analytically, in order to determine the nonlocal natural frequencies. Results show that unlike the Pasternak foundation, the influence of Winkler’s constant on nonlocal frequency is negligible for low temperature changes. Moreover, the nonlocal frequencies are always smaller as compared to their local counterparts. In addition, in high shear modulus along with an increase in aspect ratio, the nonlocal frequency decreases.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.