Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  PNN neural network
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The holy grail of tracking people indoors is being able to locate them when they are not carrying any wireless tracking devices. The aim is to be able to track people just through their physical body interfering with a standard wireless network that would be in most peoples home. The human body contains about 70% water which attenuates the wireless signal reacting as an absorber. The changes in the signal along with prior fingerprinting of a physical location allow identification of a person’s location. This paper is focused on taking the principle of Device-free Passive Localisation (DfPL) and applying it to be able to actually distinguish if there is more than one person in the environment. In order to solve this problem, we tested a Support Vector Machine (SVM) classifier with kernel functions such as Linear, Quadratic, Polynomial, Gaussian Radial Basis Function (RBF) and Multilayer Perceptron (MLP), and a Probabilistic Neural Network (PNN) in order to detect movement based on changes in the wireless signal strength.
PL
W artykule przedstawiono wyniki badań diagnostycznych silnika spalinowego przy zastosowaniu pakietu analizy falkowej (WPT) i probabilistycznej sieci neuronowej. Obiektem badań był czterocylindrowy silnik spalinowy z zapłonem iskrowym. Głównym celem badań było określenie wpływu symulowanego braku dopływu paliwa do poszczególnych cylindrów na sygnał przyspieszeń drgań kadłuba silnika. Zarejestrowane sygnały przyspieszeń drgań zostały poddane analizie za pomocą WPT w celu określenia entropii sygnału na poszczególnych poziomach dekompozycji. Określona wartość entropii stanowiła podstawę do budowy wzorców stanów pracy silnika przeznaczonych do uczenia sieci neuronowych. Z przeprowadzonych badań wynika, że istnieje możliwość wykorzystania analizy WPT i probabilistycznych sztucznych sieci neuronowych do diagnozowania uszkodzeń silników spalinowych.
EN
An investigation of a fault diagnostic technique for internal combustion engine using wavelet packet transform (WPT) and probabilistic neural network is presented in this paper. The object of research was a four-cylinder spark ignition engine. The main purpose of the research was to determine the effect of the lack of fuel inflow to an individual cylinder of the engine block vibration signal. The vibration signals are decomposed by WPT to obtain the approximated and detailed coefficient and to calculate wavelet packet node entropy. The value of entropy was used as a basis in the construction of the states of engine operation intended for teaching probabilistic neural network. The experimental results indicated that the proposed system using the engine block vibration signal is effective and can be used for fault detection of an IC engine.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.