Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  PETG
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
3D printing is a modern technology that enables the creation of three-dimensional objects from various thermoplastic copolymers. One of the challenges of 3D printing is providing adequate support for complex shapes that may fall apart or deform during the printing process. Traditionally, support materials are used for this purpose, which are difficult to remove after printing and difficult to dispose of. This work focuses on the analysis of the solubility of the BVOH support filament in solutions with different pH values. In particular, the influence of pH on the dissolution time of the BVOH (Butenediol Vinyl Alcohol Co-polymer) copolymer in aqueous solutions and its influence on changes in the PETG base material from which the samples were printed were examined. It was found that the BVOH material combined with PETG is easily soluble in an alkaline environment.
EN
Purpose The aim of this paper is to compare the mechanical properties of selected recycled thermoplastics against their equivalents made from new raw materials manufactured using the FDM/FFF additive method. Design/methodology/approach Two materials were tested: recycled polylactide (R-PLA) and recycled poly(ethylene terephthalate) with the addition of glycol (R-PETG). Reference materials are their equivalents made from new raw materials. Both types of materials are widely available on the market. In order to compare their mechanical properties and to check whether recycled materials do not differ in quality from their equivalents made from new raw materials, tensile strength tests were performed. In addition, the Vickers microhardness was measured, and the structure of printed samples using optical microscopy was observed. Findings The paper presents the results of the static tensile strength test of samples made by the FDM/FFF technology from the tested materials in accordance with the ISO-00527-2-2012 standard. The samples were manufactured at the average temperature recommended by the producer ±10°C. The results of tensile strength tests indicate that the samples printed at the average temperature show the best tensile strength for both methods of filament deposition. Research limitations/implications The recycled materials are not significantly different from the reference materials in terms of tensile strength, microhardness and structure. It is reasonable to test other polymeric materials further and check materials from several consecutive recycling cycles. Practical implications Closing the cycle of plastic used in 3D printing. The ability to quickly transform waste products, e.g. PET bottles, into filaments and reuse them to produce full-value products. Originality/value The paper presents the results of strength and microhardness tests as well as microscopic investigations of two recycled thermoplastics commonly used in the industry manufactured using the FDM/FFF technology against the background of reference materials made from new raw materials.
EN
The manufacturing of machine parts with additive methods (AM) is of significant importance in modern industry. The development of 3D printers and all 3D printing technology is impressive. The ability to make parts quickly and relatively cheaply with AM gives excellent opportunities in terms of e.g., shortening the production preparation time. Proper selection of printing parameters allows for a significant reduction of printing time and production costs. Unfortunately, this has different consequences. Due to the course of the printing process and the parameters that can be set, the same product produced with different parameters has different mechanical properties - mainly different strength. This paper presents the impact of 3D printing parameters on the strength of manufactured parts. Strength tests were carried out on samples made in accordance with DIN EN ISO 527-1:2019. The samples were printed in technology FDM from three different materials, i.e. PLA (completely biodegradable), PETG (recycled material), and Smart ABS (material with minimal shrinkage). The tested samples were made in three levels of print filling - 10%, 30%, and 60% and with different types of filling - line, mesh, and honeycomb. A series of static tensile tests were carried out to determine the strength of the samples produced with different printing parameters. Thanks to the obtained test results, it is possible to select the optimal printing parameters depending on the forecast load of the manufactured parts.
EN
The phase morphology, thermal behavior and mechanical properties of two series of polymer blends based on ethylene/propylene/diene rubber (EPDM) and amorphous homologues of poly(ethylene terephthalate), i.e. glycol modifi ed poly(ethylene terephthalate) (PETG) and poly(ethylene furanoate) (PEF), were investigated. The morphology of the blends shows a two phase structure in which the minor phase (amorphous polyester) is dispersed as domains in the major (EPDM) continuous matrix phase. Differential calorimetry studies confi rmed that both systems were immiscible and exhibits two glass transitions. The melting peak area of EPDM in the blends decreased as the amount of the other component increased. The values of stress at strain of 100% were improved upon the increasing content of PETG in EPDM system, while only slight decrease of this value was observed. Moreover, the strong improvement of hardness and thermo-oxidative stability along with an increasing content of amorphous polyester phase was reported.
EN
This paper reports on a melt-spinning process of glycol-modified poly(ethylene terephthalate) PETG and regranulate of PETG. The effect of the processing temperature and winding reel velocity on the diameters of fibres was examined. It was observed with a scanning electron microscope that the surface of fibres produced from recycled PETG are thicker but smoother than fibres made of fresh PETG. Applying a higher drawing velocity helped to decrease the diameters, which were between 75-150 μm. Under static deformation, fibres showed different behaviour, with higher flexibility and lower strength observed for fibres made of PETG regranulate. Both types of fibre were chopped and added to carbon fibre reinforced polymers as interlayers to investigate their effect on mechanical properties. It was found that the flexural strength decreased in the presence of PETG fibres, while interlaminar shear strength improved, but only in the case of fresh PETG fibres.
PL
W artykule przedstawiono proces przędzenia ze stopu zmodyfikowanego glikolem poli (tereftalanu etylenu) PETG i regranulatu PETG. Zbadano wpływ temperatury przetwórstwa i prędkości bębna nawijającego na średnice włókien. Za pomocą skaningowego mikroskopu elektronowego zaobserwowano, że włókna wytworzone z recyklatu PETG jest są grubsze, ale ich powierzchnia jest gładsza niż w przypadku włókien wykonanych ze świeżego PETG. Zastosowanie większej prędkości nawijania pomogło zmniejszyć średnice, które w efekcie wynosiły od 75 do 150 pm. Przy odkształceniu statycznym włókna wykazywały różne zachowanie, z obserwowaną większą elastycznością i mniejszą wytrzymałością włókien wykonanych z regranulatu PETG, Oba rodzaje włókien zostały pocięte i dodane do kompozytów epoksydowych wzmacnianych włóknem węglowym jako międzywarstwy, w celu zbadania ich wpływu na właściwości mechaniczne laminatów. Stwierdzono, że wytrzymałość na zginanie zmniejszyła się w obecności włókien PETG, podczas gdy wytrzymałość na ścinanie międzywarstwowe poprawiła się, ale tylko w przypadku dodatku włókien ze świeżego PETG.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.