Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 151

Liczba wyników na stronie
first rewind previous Strona / 8 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  PET
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 8 next fast forward last
1
PL
W artykule przedstawiono nowego typu betonowe murowe elementy ścienne APS (ażurowy pustak ścienny) i WAPS (wypełniony ażurowy pustak ścienny) o szkielecie wykonanym z betonu modyfikowanego materiałami recyklingowymi. Podano dane techniczne opracowanego elementu ściennego i skład betonu modyfikowanego mieszanką dodatków recyklingowych SBR (styrene butadiene rubber) i PET (politereftalan etylenu) oraz skład kompozytowej mieszanki tłumiącej powstałej na bazie tych dwóch materiałów. W celu wykazania efektywności opracowanego rozwiązania w redukcji drgań mechanicznych dokonano oceny wpływu oddziaływania różnych częstotliwości fali mechanicznej na opracowane betonowe murowe elementy ścienne APS i WAPS. Wyniki badań przedstawiono graficznie i wykazano, że wypełnienie otworów nowego typu betonowego murowego elementu ściennego recyklingową mieszanką kompozytową poprawia jego efektywność w ograniczeniu propagacji fal mechanicznych w analizowanym zakresie od 8 do 5000 Hz, pozwalając jednocześnie skutecznie zagospodarowywać materiały pochodzące z recyklingu.
EN
The article presents a new type of APS (openwork masonry unit) and WAPS (filled openwork masonry unit) concrete masonry units with a frame made of concrete modified with recycled materials. The technical data of the developed masonry unit and the composition of concrete modified with a mixture of SBR (styrene butadiene rubber) and PET (polyethylene terephthalate) recycling additives, as well as the composition of the composite damping mixture based on these two materials, are given. In order to demonstrate the effectiveness of the developed solution in reducing mechanical vibrations, the influence of the impact of different mechanical wave frequencies on the developed APS and WAPS concrete masonry unitswas assessed. The test results were presented graphically and showed that filling the holes of a new type of concrete masonry unit with a recycled composite mixture improves its effectiveness in limiting the propagation of mechanical waves in the analyzed range from 8 to 5000 Hz, simultaneously allowing the effective management of recycled materials.
EN
A concept of producing reinforcing bars for concrete elements from waste polyethylene terephthalate (PET) bottles is presented in the paper. The proposed technology of production harnesses strips of PET cut from bottles and thermal treatment. Finally, a sand-resin coating is applied to the composite bars. Produced bars can be differentiated by utilising different numbers of strips influencing the diameter of a bar. The key mechanical properties of the bars containing 3 to 8 strips were tested during the research program. Maximum loadings and displacements were established. Problems regarding the future application of the bars in question were discussed. Areas of need for further research were pointed out.
3
Content available remote The influence of the electrode material on the dielectric properties of PET films
EN
This paper presents the influence of the measuring electrode material on the dielectric properties of polyethylene terephthalate. We show that volume resistivity, surface resistivity, relative permittivity and the dielectric loss factor of PET films are a function of the electrode material used. We also evaluate the effect of thermal aging on the tested material parameters.
PL
Przedstawiono wpływ materiału elektrod pomiarowych na właściwości dielektryczne politereftalanu etylenu. Stwierdzono, że rezystywność skrośna, rezystywność powierzchniowa, względna przenikalność elektryczna oraz współczynnik strat dielektrycznych folii PET są funkcją zastosowanego materiału elektrod. Oceniono wpływ starzenia termicznego na badane parametry materiałowe.
EN
This research explores the viability of converting discarded Polyethylene Terephthalate (PET) plastic waste into a valuable resource through the implementation of pyrolysis and refuse-derived fuel (RDF) technologies. The objective is to assess the potential of PET charcoal waste as an efficient source for RDF generation, surpassing the energy recovery and recycling potential of PET waste. The study introduces three RDF variants: RDF PET100, RDF PET50, and RDF PET0. RDF PET100 is comprised entirely of PET charcoal, RDF PET50 combines 50% PET charcoal with 50% wood debris, and RDF PET0 consists entirely of wood debris. Comprehensive assessments of water content, ash content, and calorific value were conducted to evaluate the quality of these RDF formulations. Results indicate that RDF PET100 exhibits a water content of 2.63%, ash content of 0.73%, and calorific value of 5,976 MJ/kg. Similarly, RDF PET50 showcases a water content of 3.6%, ash content of 1.05%, and calorific value of 5,587 MJ/kg. RDF PET0 presents a water content of 7.51%, ash content of 1.36%, and calorific value of 4,198 MJ/kg. The outcomes underline the potential of PET plastic waste repurposing through RDF and pyrolysis techniques. Particularly, RDF PET100 emerges as a high-caliber fuel option characterized by its minimal water and ash content, coupled with a substantial calorific value. This innovation holds promise in mitigating plastic waste challenges, particularly pertinent in the context of Indonesia.
EN
The modular J-PET scanner, comprising 24 compact and versatile modules, each consisting of 13 plastic strips with four SiPM detectors at the ends, represents a powerful tool for clinical applications in nuclear medical imaging. This study presents preliminary results from the exploration of simultaneous dual-isotope imaging using the modular J-PET system. Our approach involved two isotopes: 68Ge, characterized by a ringlike shape, and 22Na, exhibiting a point-like shape. The imaging was based on double-coincidence and triple-coincidence events. In the double coincidence case, both isotopes contributed comparably, whereas in the triple coincidence case 22Na dominated due to the prompt gamma being emitted with 100% of positron emissions, unlike 68Ga, where the prompt gamma was emitted in only 1.3% of cases after positron emission. In this work we present direct 2γ images determined for two-signal events and images for three-signal events, with two signals from annihilation photons and one from a prompt gamma. These results showcase the preliminary findings from simultaneous dual-isotope imaging of 68Ga and 22Na isotopes using the modular J-PET scanner, which will be presented and discussed.
EN
The positronium imaging technique represents a potential enhancement of the PET imaging method. Its core principle involves employing a β+ radiation source that emits additional gamma (γ) quanta referred to as prompt gamma. Our aim is to evaluate the capability to differentiate between annihilation and prompt gamma emissions, a vital aspect of positronium imaging. For this purpose, the selected isotopes should enable high efficiency and purity in detecting both prompt gamma and annihilation gamma. The assessment of the efficiency in identifying prompt and annihilation photons for various isotopes, which are potentially superior candidates for β++ γ emitters, is conducted through toy Monte-Carlo simulation utilizing the cross-section formula for photon-electron scattering. In this article, we have performed calculations for efficiency and purity values across different isotopes under ideal conditions and examined how these values evolve as we incorporate the fractional energy resolution into the analysis. Ultimately, the primary goal is to determine the energy threshold that optimizes both efficiency and purity, striking a balance between accurately identifying and recording events of interest while minimizing contamination from undesired events.
7
Content available remote Estimating influence of positron range in proton-therapy-beam monitoring with PET
EN
The application of PET scanners to proton-beam-therapy monitoring is a promising solution to obtain the range of the beam and hence the positions of a Bragg peak - maximum dose deposition point. A proton beam induces nuclear reactions in the tissue, leading to the production of isotopes that emit β+ radiation. This enables the imaging of the density distribution of β+ isotopes produced in the body, allowing the reconstruction of the proton beam range. Moreover, PET detectors may open the possibility for in-beam monitoring, which would offer an opportunity to verify the range during irradiation. PET detectors may also allow positronium imaging, which would be the indicator of the tissue conditions. However, the image of annihilation points does not represent the range of the proton beam. There are several factors influencing the translation from annihilation points to obtain the Bragg peak position. One of them is the kinetic energy of the positron. This energy corresponds to some range of the positron within the tissue. In this manuscript we estimate positron energy and its range and discuss its influence on proton therapy monitoring.
8
EN
In this article, we present the modern state of development of boron neutron capture therapy (BNCT) for cancer treatment using compact neutron generators. In the introduction we consider the main advantages and problems of the BNCT method, the main approaches and directions for building neutron sources, the development of chemical materials - boron-containing delivery agents and the control of irradiation of malignant tumours and healthy tissues. In the main part of the article we consider the main structures of neutron generators that can be effective for applying in BNCT. The development and building of a prototype of a compact neutron generator is also described.
EN
Dose delivery in proton beam therapy requires significant effort for in vivo verification. PET is considered as one of the most precise methods for such verification using short- -lived radionuclides. One of the newer approaches in proton therapy is based on FLASH therapy, when a 40-60 Gy absorbed dose could be delivered in millisecond time intervals. For this very promising type of therapy a very important task is to reliably identify the beam stopping position within the corresponding organ with a tumor in the patient’s body. This could be done if the beam proton energy in the body is still above the threshold of the corresponding nuclear reaction, in the outgoing channel of which will be produced positron-emitting nuclei. In this work we consider the production of oxygen radionuclides emitting positrons 14O (the half-life 70.6 s) and 15O (the half-life 122.2 s). Using the TALYS code, we calculated cross sections of proton-induced nuclear reactions on 14N and 16O, leading to the formation of 14,15O with the application of a well- -working optical model. In addition, we calculated total gamma-production and average gamma-emission energy for incident proton energy 150 MeV.
EN
A great deal of packaging made of PET is observed in logistics supply chains, and the article is mainly concerned with food – bottles. Implementing the EU’s “zero-waste” guidelines implies action on the part of producers of packaging and food for B2C distribution to find new solutions to enable the above-mentioned stakeholders in the logistics supply chain to balance the business mentioned above parties – taking into account environmental protection. The article discusses the tasks and possibilities under the above conditions of a new type of “RECYCLER” companies, which, at the end of the life of PET packaging, i.e. after the foodstuffs in PET bottles have been consumed, produce a recyclate and return it to reproduction. In several journals, including, e.g. (Połednik et al. 2016, Topiarzová et al. 2011), respecting good recycling practices – there is an ongoing discussion on the sense of introducing reusable packaging, deposits, etc. This article discusses the barriers to recovery in a multi-level plastics recovery system, with specific reference to the operation of a PET bottle recycling line, and presents a pre-verified concept for a method to increase the efficiency of separating PET bottles from the plastics fraction in a multi-level waste separation system.
PL
W artykule przedstawiono wyniki prac projektowych i badawczych, których celem było wytworzenie lekkiego kruszywa ultrakompozytowego (UCLA - ultracomposite lightweight aggregate) w wyniku połączenia odpadów pochodzących z różnych źródeł. Opracowana technologia wytwarzania pozwoliła na wykorzystanie odpadów pochodzących z termoplastycznych polimerów (PET) oraz mineralnych odpadów z procesów spalania, i pozyskanie kruszywa lekkiego mogącego znaleźć powszechne zastosowanie w budownictwie. W trakcie prac nad technologią wytwarzania nowego, ekologicznego kruszywa wykorzystano właściwości fizyczne termoplastycznych tworzyw sztucznych, w tym ich dużą lepkość w stanie stopionym. W wyniku odpowiednio przeprowadzonej obróbki termicznej w specjalnie zaprojektowanych warunkach wytworzono kompozyt w postaci granulek odpowiadających frakcji kruszywowej 2 - 8 mm. Uzyskano różne rodzaje kruszyw lekkich wykonanych przy użyciu różnych drobnoziarnistych wypełniaczy mineralnych - ubocznych produktów spalania, których podstawowe właściwości zostały zbadane i zaprezentowane.
EN
The paper presents the results of design and research work aimed at producing ultracomposite lightweight aggregate (UCLA) as a result of combining waste from different sources. The developed production technology allowed to utilize waste from thermoplastic polymers (PET) with mineral waste from combustion processes, and to produce a lightweight aggregate that can be widely used in construction. During the development of the technology to produce a new, ecological aggregate, the physical properties of thermoplastics and their high viscosity in the molten state were used. As a result of a properly conducted thermal treatment in specially designed conditions, a composite in the form of granules corresponding to an aggregate fraction of 2 - 8 mm was produced. Different types of lightweight aggregates made with various fine-grained mineral fillers - by-products of combustion - were obtained, the basic properties of which were studied and presented.
EN
Plastics play an important role in our lives due to their versatility, lightness and low production cost. They can be found in almost every industry such as automotive, construction, packaging, medical, and engineering applications among others. Polyethylene terephthalate (PET) is one of the most consumed plastics worldwide in the packaging sector, which is why its useful life is usually very short, causing serious problems due to high disposal in the environment and urban landfills. The thermochemical degradation of PET has been studied by some researchers and it has been found that its degradation products are of high added value, which is why this work focuses on presenting the results obtained in the literature.
EN
Nowadays, Medical imaging modalities like Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Tomography (SPECT), and Computed Tomography (CT) play a crucial role in clinical diagnosis and treatment planning. The images obtained from each of these modalities contain complementary information of the organ imaged. Image fusion algorithms are employed to bring all of this disparate information together into a single image, allowing doctors to diagnose disorders quickly. This paper proposes a novel technique for the fusion of MRI and PET images based on YUV color space and wavelet transform. Quality assessment based on entropy showed that the method can achieve promising results for medical image fusion. The paper has done a comparative analysis of the fusion of MRI and PET images using different wavelet families at various decomposition levels for the detection of brain tumors as well as Alzheimer’s disease. The quality assessment and visual analysis showed that the Dmey wavelet at decomposition level 3 is optimum for the fusion of MRI and PET images. This paper also compared the results of several fusion rules such as average, maximum, and minimum, finding that the maximum fusion rule outperformed the other two.
EN
The interfacial structure and binding forces of polytrimethylene terephthalate/polyethylene terephthalate filament were investigated through the methods of Carbon-13 nuclear magnetic resonance (13C-NMR), differential scanning calorimeter (DSC), scanning electron microscopy (SEM) and optical microscopy. When two molten polymers met during the spinning process, an interface layer between the PTT and PET components formed and played an important role in binding the two components together. When the blending time was sufficient, an ester-interchange reaction took place with the generation of the copolymer. The PET recrystallisation was observed in the DSC curve under the influence of entangled PTT molecular chains. The morphology of the cross-section and side view proved that the linear boundary line was short and weaker in binding without a chemical bond and molecular diffusion. Side-by-side bi-component fiber and split-type fiber was able to be controllably spun by adjusting the spinning parameters.
EN
Positron-electron annihilation in living organisms occurs in about 30% via the formation of a metastable ortho-positronium atom that annihilates into two 511 keV photons in tissues because of the pick-off and conversion processes. Positronium (Ps) annihilation lifetime and intensities can be used to determine the size and quantity of defects in a material's microstructure, such as voids or pores in the range of nanometers. This is particularly true for blood clots. Here we present pilot investigations of positronium properties in fibrin clots. The studies are complemented by the use of SEM Edax and micro-computed tomography (µCT) to evaluate the extracted thrombotic material's properties. µCT is a versatile characterization method offering in situ and in operando possibilities and is a qualitative diagnostic tool. With µCT the presence of pores, cracks, and structural errors can be verified, and hence the 3D inner structure of samples can be investigated.
16
Content available remote A new brain dedicated PET scanner with 4D detector information
EN
In this article, we present the geometrical design and preliminary results of a high sensitivity organspecific Positron Emission Tomography (PET) system dedicated to the study of the human brain. The system, called 4D-PET, will allow accurate imaging of brain studies due to its expected high sensitivity, high 3D spatial resolution and, by including precise photon time of flight (TOF) information, a boosted signal-to-noise ratio (SNR). The 4D-PET system incorporates an innovative detector design based on crystal slabs (semi-monolithic) that enables accurate 3D photon impact positioning (including photon Depth of Interaction (DOI) measurement), while providing a precise determination of the photon arrival time to the detector. The detector includes a novel readout system that reduces the number of detector signals in a ratio of 4:1 thus, alleviating complexity and cost. The analog output signals are fed to the TOFPET2 ASIC (PETsys) for scalability purposes. The present manuscript reports the evaluation of the 4D-PET detector, achieving best values 3D resolution values of < 1,6 mm (pixelated axis), 2.7±0.5 mm (monolithic axis) and 3.4±1.1 (DOI axis) mm; 359 ± 7 ps coincidence time resolution (CTR); 10.2±1.5 % energy resolution; and sensitivity of 16.2% at the center of the scanner (simulated). Moreover, a comprehensive description of the 4D-PET architecture (that includes 320 detectors), some pictures of its mechanical assembly, and simulations on the expected image quality are provided.
EN
Thick (0.125 mm) sheet samples of PET were irradiated with 150 keV Cs+ ion beam with fluences in the range from 10^13 cm^-2 up to 10^16 cm^-2). Raman and UV-VIS spectroscopy measurements shown destruction of numerous bonds within the polymer – this effect intensifies with fluence. Raman spectroscopy shows the presence of amorphous graphitelike structures as the broad G band appears in the collected spectrum. The analysis of absorbance spectra also confirms formation of numerous carbon clusters leading to a formation of vast conducting structures in the modified layer of the polymer. One can observe the decrease of optical bandgap from 3.85 eV (typical for pristine PET) to 1.05 eV for the sample implanted with the highest fluence, the effect is weaker than for lighter alkali metal ions. The estimated average number of C atom in a clusters reaches in such case values close to 1100. The changes in the polymer structure lead to intense reduction of electrical sheet resistivity of the modified samples by ~ 8 orders of magnitude in the case of severely modified sample. The dependence of resistivity on temperature has also been measured. The plots of ln(σ) vs 1/T show that band conductivity or nearest neighbor hopping between conducting structures prevail in the considered case
PL
Idea zastąpienia zbrojenia w betonie innym, mniej energochłonnym materiałem jest bardzo kusząca. Od pewnego czasu czynione są próby wzmacniania betonu włóknami z butelek plastikowych PET. W artykule przedstawiono wyniki badania wytrzymałości betonu na ściskanie i zginanie zbrojonego „włóknami” z politereftalanu etylenu PET pozyskanego z butelek po napojach. W poszczególnych seriach betonu długości włókien PET były różne: 32 , 62 i 93 mm. Najkorzystniejsze wyniki uzyskano z włóknami 62 mm. Porównano je z fibrobetonem zbrojonym włóknami polipropylenowymi PP, stalowymi i bez zbrojenia rozproszonego.
EN
The idea of replacing the reinforcement in concrete with another, less energy-consuming material is very tempting. For some time, attempts have been made to strengthen concrete with fibers from PET plastic bottles. The article presents the results of testing the compressive and bending strength of concrete reinforced with „fibers” made of polyethylene terephthalate PET obtained from beverage bottles. In each series of concrete, the lengths of PET fibers were different: 32, 62 and 93 mm. The best results were obtained with 62 mm fibers. They were compared with fibrobeton reinforced with PP polypropylene fibers, steel and without dispersed reinforcement.
19
Content available remote Badanie ciągłości kolumn w geotechnice
EN
The ecological issues posed in the land, air and water compartments of the environment by waste polyethylene terephthalate (PET) packaging materials linger to be a significant problem nowadays, strictly linked to the rise in consumption of PET packaging materials by the populations in developing countries. However, little efforts are involved in these parts of the world, in managing sources and impacts of waste PET packaging materials. Although the main raw materials, PET polymers, are not considered lethal, the residual monomers in the raw materials have been proven hazardous to the environment. Moreover, many chemicals used in the production of PET packaging materials, such as additives, are dangerous to the environment, along with some degradation products that may be released during the PET packaging materials life cycle. In view of the potential impacts by waste PET packaging materials in the environment, this paper highlights the sources, impacts and management of waste PET packaging materials. We involved extensive literature review on the waste PET packaging materials. It was concluded that the management of waste PET packaging materials by the sources generating them together with recycling, enlightenment, re-usage, ban, product replacement, and improved collection of waste will mitigate the impacts on the environment.
first rewind previous Strona / 8 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.