Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Numerical Weather Model
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Weighted mean temperature (Tm) is used to determine water vapor content, precipitable water vapor, and integrated water vapor (IWV) in GNSS. This parameter is highly correlated with climate conditions as well as the type of the region. The case study is performed in Iran which has diverse climate. ERA5 reanalysis datasets were used at a compact grid of 0.125 ×0.125 between 2007 and the end of 2019 to model the Tm. The data obtained from 12 radiosonde stations along with an IGS station located in Tehran were employed in this research. Five models were examined for Tm. Bevis model, linear grouping model (LGM), and linear nearest grid point model (LNGPM) were considered as Tm linear models, and harmonic model (HM) and GPT2w model were used as nonlinear models. In LGM method the study region was divided into smaller areas with different linear model coefficients using spatial grouping method. The local model in each radiosonde station was considered as a reference. According to the results, the accuracy of linear models (Bevis and LGM model) was between 3 and 8 K (radiosonde data as reference); also 7 out of 12 stations in the LGM had higher accuracy than the Bevis model (based on RMSE). The accuracy of the two GPT2w models and the harmonic model was higher than the previous two models, and it was between 2 and 4 K. The IWV values were obtained using zenith total delay observations of IGS station located in Tehran using 5 models and were compared with the IWV values of the radiosonde station. The accuracy of the values in three linear models, Bevis, LGM, and LNGPM, was, respectively, 0.2, 0.17, and 0.14 kg m−2, and in the two nonlinear models, GPT2w and HM, was 0.13 kg m−2.
2
Content available remote Symmetric neutral-atmosphere mapping functions: a review of the state-of-the-art
EN
The aim of this paper is to review of six recent symmetric mapping functions. The mapping function can be largely used for GPS meteorological measurements, InSAR atmospheric corrections and precise measurements of very long baseline interferometry (VLBI). These spacebased techniques use radio signal that propagate through the Earth's atmosphere. The electrically-neutral region, predominantly the troposphere, affects the speed and direction of travel of radio waves leading to existence of excess path. The mapping function models the elevation angle dependence of the delay. Within the past decade, significant improvements have been achieved in order to use of Numerical Weather Models (NWM) for geodetic positioning. Ray-tracing algorithms have been performed through refractivity shells retrieved from NWMs in order to relate zenith delays to slant delays. Therefore, there seems to be a real need for deep review of recent developments in the mapping function domain. This paper proposes a comprehensive review of the symmetric mapping functions state of the art, their spatio-temporal variations and used NWM and generic models. Niell Mapping Function (NMF), Vienna Mapping Function (VMF1), University of New Brunswick-VMF1 (UNB-VMF1) mapping functions, Global Mapping Function (GMF) and Global Pressure and Temperature (GPT2)/GMF are reviewed in this paper.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.