This report presents the results of a petrographical and mineralogical (optical microscopy, BSE-EDS image analysis) study of zircon in samples from the Lower Nubian monzogranite. The mineral occurs as smaller grains (< 80 µm) in a finegrained quartz-feldspar-matrix, coexisting with other accessory minerals including biotite, clinochlore, titanite, and britholite-(Ce). Zircon is also present within biotite and britholite-(Ce), suggesting that it started crystallization at about the same time as these two minerals. Two types of thorite inclusions within zircon are reported in this study. Type 1 is widely distributed throughout the zircon grain, forming crystallites of which each is typically < 1 µm in size. Type 2 is relatively larger (5-15 µm) and occurs only in one part of the grain. For the thorite inclusions, three possible origins are briefly discussed: (1) exsolution of thorite from zircon; (2) dissolution/reprecipitation of zircon; and (3) growth syngenetically with zircon. Of these potential hypotheses, the syngenetic growth model seems more favorable for zircon-thorite intergrowths than the other two hypotheses. Thorite inclusions and their host zircons seem to have grown from magma rather than hydrothermal or supercritical solutions. Here, they have primary textures and consistent chemical compositions that are consistent with whole-rock geochemistry.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.