Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Nosé-Hoover mechanics
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Canonical Temperature Control by Molecular Dynamics
EN
“Pedagogical derivations for Nosé’s dynamics can be developed in two different ways, (i) by starting with a temperature-dependent Hamiltonian in which the variable s scales the time or the mass, or (ii) by requiring that the equations of motion generate the canonical distribution including a Gaussian distribution in the friction coefficient ζ. Nosé’s papers follow the former approach. Because the latter approach is not only constructive and simple, but also can be generalized to other forms of the equations of motion, we illustrate it here. We begin by considering the probability density f(q, p, ζ) in an extended phase space which includes ζ as well as all pairs of phase variables q and p. This density f(q, p, ζ) satisfies the conservation of probability (Liouville’s Continuity Equation) (∂f /∂t) +Σ(∂('qf)/∂q) +Σ(∂( ˙pf)/∂p) +Σ(∂( ˙ζf)/∂ζ) = 0 .” The multi-authored “review” [1] motivated our quoting the history of Nosé and Nosé-Hoover mechanics, aptly described on page 31 of Bill’s 1986 Molecular Dynamics book, reproduced above [2].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.