Arikaynen A.I., Tsubakov K.N. 1987. Alphabet of ice navigation. [in Russian] (Aзбyкa лeдoвoгo плaвaния). Transport, Moscov: 224 Buysse J. 2007. Handling ships in ice, A practical guide to handling 1A and 1AS classed ships. The Nautical Institute, London: 166 House D.J., Lloyd T., Toomey P.R.M., Dickins D. 2010. The ice navigation manual. Witherby Seamanship International Ltd: 409 International Hydrographic Office, 1953. Limits of oceans and seas. Publication S-23: 40 International Hydrographic Office, 2002. Limits of oceans and seas. Publication S-23, Draft 4th Edition, 2002: 235 Jurdziński M. 2000. Planning the navigation in ice [in Polish] (Planowanie nawigacji w lodach). Wyższa Szkoła Morska, Gdynia: 192 NATICE, 2018. MIZ ice concentration maps in ESRI Shape format. U.S. National Ice Center, http://www.natice.noaa.gov/Main_Products.htm. Accessed 19.12.2018 Natural Earth, 2017. Free vector and raster map data at 1:10 m, 1:50 m, and 1:110 m scales, http://www.naturalearth-data.com. Accessed 01.01.2017 Parnell G.Q. 1986. Ice seamanship, Monograph. The Nauitical Institute: 87 Pastusiak T. 2016a. The time window for vessels without ice strengthening on the Northern Sea Route, Annual of Navigation, No. 23: 103-119 Pastusiak T. 2016b. The Northern Sea Route as a shipping lane. Expectations and Reality, ISBN 978-3-319-41832-2, ISBN eBook 978-3-319-41834-6, Springer International Publishing AG, Switzerland: 247 Pastusiak T. 2016c. Principles of Vessel Route Planning in Ice on the Northern Sea Route, TRANSNAV, International Journal of Marine Navigation and safety of sea transportation, Vol. 10 No. 4 - December 2016 Pastusiak T. 2018. Planning independent transit voyages of vessel without ice strengthening through the Northern Sea Route [in Polish] (Planowanie samodzielnych podróży tranzytowych statku bez wzmocnień lodowych przez Północną Drogę Morską). Akademia Morska w Gdyni, Gdynia, ISBN 978-83-7421-286-1: 278 Pastusiak T. 2020. Voyages on the Northern Sea Route, Springer International Publishing, 1st ed. 2020, XXXVIII, Print ISBN 978-3-030-25489-6: 279 Shapaev V.M. 1975. Hydrometeorological conditions and navigation [in Russian] (Гидрометеорологические условя и мореплавание). Moscov, Transport: 248
The goal of the study was to examine ice cover conditions that accompanied the passage of convoy of seven Polish vessels from Europe to the Far East in year 1956, which initiated an international commercial shipping transit. Several different sources of information on the state of ice cover in the Arctic were used in this study. Ice conditions (decisive for ability of a merchant vessel or icebreaker to cross the route) during the following navigational seasons in most of the NSR areas showed extremely divergent results - from the most favorable to the most difficult and vice versa. Existing in years 1940-1957 ice cover conditions and shipbuilding technologies did not guarantee a successful transit passage in one navigation season. The Soviet Union used icebreakers that were not able to lead vessels in heavy ice conditions that occurred in 1950s. The NSR Administration used passive strategy ? waiting for improvement of ice conditions - instead of forcing heavy ice. Passive strategy of navigation through the NSR included wintering and continuation of passage next year when ice conditions improved. Annual variability of ice conditions approximated by third degree polynomial line showed trends well. However, the high annual anomalies of ice conditions in relation to trend line did not allow for effective forecasts on particular sections of the NSR in next navigation season.
A complex of ice cover characteristics and the season of the year were considered in relation to vessel route planning in ice-covered areas on the NSR. The criteria for navigation in ice - both year-round and seasonal were analyzed. The analysis of the experts knowledge, dissipated in the literature, allowed to identify some rules of route planning in ice-covered areas. The most important processes from the navigation point of view are the development and disintegration of ice, the formation and disintegration of fast ice and behavior of the ice massifs and polynyas. The optimal route is selected on basis of available analysis and forecast maps of ice conditions and ice class, draught and seaworthiness of the vessel. The boundary of the ice indicates areas accessible to vessels without ice class. Areas with a concentration of ice from 0 to 6/10 are used for navigation of vessels of different ice classes. Areas of concentration of ice from 7/10 up are eligible for navigation for icebreakers and vessels with a high ice class with the assistance of icebreakers. These rules were collected in the decision tree. Following such developed decision-making model the master of the vessel may take decision independently by accepting grading criteria of priorities resulting from his knowledge, experience and the circumstances of navigation. Formalized form of decision making model reduces risk of the "human factor" in the decision and thereby help improve the safety of maritime transport.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.