Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Navigational Bridge
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The EC funded CyClaDes research project is designed to promote the increased impact of the human element in shipping across the design and operational lifecycle. It addresses the design and operation of ships and ship systems. One of the CyClaDes’ tasks is to create a crew-centered design case-study examination of the information that is shared between the Bridge and Engine Control Room that helps the crew co-ordinate to ensure understanding and complete interconnected tasks. This information can be provided in various ways, including communication devices or obtained from a common database, display, or even the ship environment (e.g., the roll of the ship). A series of semi-structured interviews were conducted with seafarers of diverse ranks to get a better idea of what communication does, or should, take place and any problems or challenges existing in current operations, as seen from both the bridge and ECR operators’ perspectives. Included in the interview were both the standard communications and information shared during planning and executing a voyage, as well as special situations such as safety/casualty tasks or heavy weather. The results were analyzed in terms of the goals of the communication, the primary situations of interest for communication and collaboration, the communication media used, the information that is shared, and the problems experienced. The results of seafarer interviews are presented in the paper to explore on-board inter-departmental communication.
EN
International sea transport has growing rapidly during the period of the last decade. Ships became larger and wider and its container capacity is still increasing to 12.000 TEU and even more. To navigate such vessels safely from port to port and specifically within the ports more and more enhanced computer-based systems are installed on the ships navigational bridges. Prediction tools are very helpful and already in use on ships for a long time. However, the simplification of existing predictions allows restricted use only and do not include the immediate response on changes of rudder and engine. Within this paper investigations into the feasibility and user acceptance of newly developed layout of navigation display will be introduced and selected results of simulation studies testing the influence on manoeuvre performance dependent on different kind of prediction functions will be discussed. Examples will be given for results from test trials in the full mission ship handling simulator of the Maritime Simulation Centre Warnemunde and a concept for the application of the developed .tools for purposes of collision avoidance is described.
3
Content available Development of a Concept for Bridge Alert Management
EN
Modern ship bridges are highly-automated man-machine systems. Safe and efficient ship operations are dependent on the communication between humans and machines. This paper is dedicated to the general subject of integrated navigation and the specific field of the alert management on a ship's navigational bridge. It deals with investigations into the present situation on board of ships regarding the frequency and type of triggered alarms under real conditions. The conduction of empirical field studies is introduced and some of the gained results are presented and discussed. Finally the alert management concept of the performance standards for Integrated Navigation Systems (INS) is introduced and an approach for the reduction of CPA/TCPA alarm frequencies within INS/IBS is described.
EN
Modular Integrated Navigation Systems (INS) according to the revised IMO performance stan­dards on INS combine and integrate the validated information of different sensors and functions and allow the presentation on the various displays according to the tasks. The aim of the investigations discussed within this paper was to assess the advantages of an INS design compared to a traditional bridge layout with respect to the execution of collision avoidance and route monitoring tasks. The Situation Awareness Global Assessment Technique (SAGAT) approach was applied to assess Situation Awareness (SA) during these operations while bridge design and out of window visibility were manipulated. Additionally, workload was measured by NASA-TLX with its six subscales. The experiment was con­ducted in a full immersive simulation environ­ment with 26 experienced mari­ners. The results indicate that SA is significantly higher with the INS bridge design in the reduced visibility condition compared to the traditional bridge design. Also, tendencies were found that workload and subdimensions are influenced by bridge design and visibility conditions.
5
Content available remote Multisensor Data Fusion in the Decision Process on the Bridge of the Vessel
EN
More and more electronic devices appears on the bridge of the vessel. All of them are supposed to help navigator in his work. Some of them are useful for exchanging data among vessels. Nowadays navigator can observe surroundings of the vessel on screens of some different systems of exchanging data. It is obvious that there are some advantages and some disadvantages of each of these systems. Proposal of the author is connecting data obtained from mentioned systems by means of data fusion technique. Joining few systems in one will be helpful at making decision on the bridge of the vessel. This paper is an introduction to consideration how to use the data fusion in the maritime navigation.
6
Content available remote Fairway Navigation – Observing Safety-Related Performance in a Bridge Simulator
EN
This paper proposes an approach of measuring navigation performance using a full mission bridge simulator. The motivation for this research is the updates in equipment and that the desire of using new instruments and technology not always is accompanied by analyses of the impact of the changes. The task of navigating in a fairway is proposed to be assessed through various methods to answer questions related to performance and the experience of using bridge equipment. The overall aim is to reach a higher degree of understanding and knowledge through the testing of different instrumentation setups.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.