Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  NPs
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The distinctive qualities and wide array of possible applications of nanotechnology have garnered considerable attention. Nanotechnology offers a groundbreaking way for expanding agricultural output that is also ecologically benign, helpful to living things, and economically priced – all without losing quality. There is a growing trend towards using eco-friendly technologies as substitutes for conventional agricultural inputs, such as fertilizers and insecticides. With the aid of nanotechnology, the confines of conventional farming techniques can be overcome. As a result, it becomes essential for investigators to devote their energies to the noteworthy nanoparticles (NPs) in agriculture investigations that have been distributed. It offered a fresh perspective on the development and application of nanoparticles as nano-fertilizers and nano-pesticides in agriculture and a way to heighten bio-factor execution. Furthermore, we discuss the relations of NPs with plants, the perils and putrefaction of nanomaterials in plants, and the utility of NPs in the reduction of stress triggered by heavy metal toxicity and abiotic factors. It is imperative that nano-fertilizers are practiced to reduce the environmental maltreatment caused by conventional, inorganic fertilizers. Nano-fertilizers are more sensitive and have the ability to penetrate the epidermis, empowering them to promote nutrient consumption efficiency while reducing nutrient overabundance. A study found that NPs may cause oxidative stress symptoms in higher plants if they adhere to cell surfaces or organelles. Understanding the benefits and drawbacks of using nano-fertilizers instead of conventional fertilizers is valuable, and it is the purpose of this book chapter to provide this information.
EN
Herein, the photocatalytic degradation of the Congo Red (CR) and Crystal Violet (CV) dyes in an aqueous solution were discussed in the presence of an indium(III) oxide (In2O3) as optical catalyst efficiency. The caproate bidentate indium(III) precursor complex has been synthesized and well interpreted by elemental analysis, molar conductivity, Fourier transform infrared (FT-IR), UV-Vis, and thermogravimetric (TGA) with its differential thermogravimetric (DTG) studies. The microanalytical and spectroscopic assignments suggested that the associated of mononuclear complex with 1:3 molar ratio (M3+:ligand). Octahedral structure is speculated for this parent complex of the caproate anion, CH3(CH2)4COO− ligand. The In2O3  NPs with nanoscale range within 10–20 nm was synthesized by a simple, low cost and eco-friendly method using indium(III) caproate complex. Indium oxide nanoparticles were formed after calcination of precursor in static air at 600°C for 3 hrs. The structural, grain size, morphological and decolorization efficiency of the synthesized NPs were characterized using the FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analyses. It was worthy mentioned that the prepared In2O3  NPs showed a good photodegradation properties against CR and CV organic dyes during 90 min.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.