Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 25

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  NMPT
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
PL
Dane LiDAR dostarczają wielu informacji o terenie jednak wymagają bardzo czasochłonnych procesów obróbki oraz odpowiednich zasobów sprzętowych. W trakcie analiz przestrzennych bazujących na dużych zestawach danych napotkać można wiele problemów natury technicznej. W artykule podjęto próbę konwersji chmury punktów do modelu rastrowego NMT oraz NMPT. Szukając najlepszego rozwiązania wykorzystano 7 różnych programów dostępnych na licencji studenckiej, open-source oraz w wersji próbnej. Każdy program jednak znacząco różni się pod względem ingerencji użytkownika, możliwości analitycznych, możliwości automatyzacji czy też radzenia sobie z dużymi zestawami plików, stąd też wybór odpowiedniego oprogramowania jest bardzo trudny.
EN
LiDAR data provides a lot of information about terrain, but they need very time consuming processes of generating other products and a good quality of hardware. During spatial analyses based on big sets of data one can meet many technical problems. In the article it was made an attempt to build a DTM and a DSM raster models based on point cloud. Looking for the best solution 7 different software has been used available on educational, open-source of trial license. Each software is different regarding the user integration, analytics possibilities, abilities to automate the processes and management of working with big size data. That is why the choose between the best software is so hard.
EN
The techniques of converting stereo-pair aerial photographs or satellite images are used to prepare the digital surface models (DSM), digital elevation models (DEM) or to obtain the height of the objects. Recently, the Copernicus Land Monitoring service released a product presenting the building heights for the major – capital cities in Europe. The Building Height 2012 layer was derived based on the stereo images acquired by the IRS-5 satellite close to the defined reference year 2012. The main aim of the study was to examine the accuracy of the Copernicus Building Height 2012 layer in comparison with the building height derived from airborne laser scanning system. The study was carried out over the city of Warsaw (the capital of Poland). In general, data from both datasets are compatible, however the overestimation of the height was observed. The comparison carried out in two ways produced similar results. On average, the overestimation of the satellite-based building height for the study area reached 1.08 m.
PL
Techniki przetworzenia stereopar zdjęć lotniczych lub obrazów satelitarnych wykorzystywane są do tworzenia numerycznych modeli terenu, numerycznych modeli pokrycia terenu czy generowania wysokości budynków. W 2018 r., w ramach europejskiego programu monitorowania powierzchni Ziemi – Copernicus Land Monitoring została udostępniona warstwa przedstawiająca wysokości budynków obejmująca zasięgiem wszystkie Europejskie stolice. Warstwa wysokości budynków została opracowana na podstawie analizy stereopar obrazów satelitarnych z satelity IRS-5, zarejestrowanych około roku 2012. Głównym celem prowadzonych analiz było wykonanie oceny jakościowej warstwy wysokości budynków Building Height 2012 w odniesieniu do krajowych danych referencyjnych, którymi są dane z lotniczego skaningu laserowego uzyskane w ramach projektu ISOK. Analizami objęto obszar miasta Warszawy. Wyniki analizy pokazują, że jest całkiem duża zgodność pomiędzy dwoma zbiorami danych, jednakże zaobserwowano także przeszacowanie wartości wysokości budynków. Obie metody porównania wykorzystane w tej pracy przyniosły podobne wyniki. Średnia wartość przeszacowania w wysokościach uzyskanych z danych satelitarnych wynosi 1.08 m.
PL
Celem niniejszego artykułu było ukazanie możliwości tworzenia numerycznych modeli wysokościowych na podstawie pary satelitarnych zdjęć stereoskopowych. Zdjęcia obejmowały obszar centralnej Warszawy. Wyniki skontrolowano z modelem powstałym na podstawie lotniczego skanowania laserowego (LIDAR). Stereopara pochodziła z satelity o bardzo dużej rozdzielczości Pleiades, zaś dane LIDAR zostały pozyskane w ramach projektu ISOK. W eksperymencie analizowano wpływ parametrów gęstego dopasowania obrazów, liczby fotopunktów niezbędnej do poprawnej georeferencji scen satelitarnych wstępnie orientowanych współczynnikami RPC, oceniono dokładność względem modelu wysokościowego LIDAR z uwzględnieniem eliminacji błędów grubych oraz spowodowanych martwymi polami. Prace przeprowadzono w oprogramowaniu Trimble Inpho. Uzyskane wyniki potwierdziły możliwość zastosowania wyłącznie 2-3 fotopunktów na obszarze opracowania, aby uzyskać zadowalające wyniki orientacji, a dalej tworzonego modelu wysokościowego. W analizie dokładności modelu wysokościowego uzyskano wyniki na poziomie pojedynczego piksela. Dla terenów odkrytych przy 214 fotopunktach kontrolnych z danych LIDAR błąd wysokościowy RMS wyniósł 50 cm.
EN
The aim of this work was to show the possibility of generating digital surface models on the basis of satellite stereo-pair. Test area of experiment was the central part of Warsaw. The results were compared with a DSM based on the airborne laser scanning (LIDAR). The stereo-pair was collected with very high resolution satellite system Pleiades and LIDAR data was acquired within the ISOK project. In the experiment: the influence of dense image matching the parameters was analysed, impact of control points on the correctness of scenes georeferencing pre-orientated with RPC coefficients was verified, the accuracy of DSM was assessed including outliers resulted in lower spatial resolution of satellite imagery and occluded areas. The experiment was processed in the Trimble Inpho software. The results confirmed the possibility of applying only 2-3 control points in order to obtain satisfactory results of scenes orientation and consequently DSM accuracy. In the analysis of elevation models their accuracy at the level of a single ground sample distance was achieved. For uncovered areas in case of 214 LIDAR-based control points vertical RMS was 50 cm.
EN
The article presents the possibility of using unmanned aerial vehicle to perform selected photogrammetric studies. The first part shows the mathematical basis of aerotriangulation based on a series of images. Next, a photogrammetric system consisting of an unmanned aerial vehicle (UAV) equipped with a camera and specialized software for recording and processing images was presented. The main part shows the stages of the photogrammetric processing from the images i.e. mission plan of the incursion, creation of a thick cloud of points and a three-dimensional model. It also shows the analysis of the quality of the developed orthophotomap and a numerical model of the surface area, including photopoints by comparing them to orthographic images that are shared on Google. The final part contains generalized conclusions derived from the conducted research.
PL
W artykule przedstawiono możliwość wykorzystania bezzałogowych statków powietrznych do wykonywania wybranych opracowań fotogrametrycznych. W pierwszej części przedstawiono podstawę matematyczną aerotriangulacji wykonywanej na podstawie serii zdjęć. Następnie zaprezentowano wykorzystany podczas badań system fotogrametryczny złożony z bezzałogowego statku powietrznego (BSP) wyposażanego w kamerę oraz specjalistyczne oprogramowanie służącego do rejestracji i przetwarzania zdjęć. W zasadniczej części przedstawiono etapy procesu wykonywania opracowania fotogrametrycznego ze zdjęć, tj. plan misji wykonywanego nalotu, tworzenia zagęszczonej chmury punktów oraz trójwymiarowego modelu. Ukazano w niej także analizę jakości opracowanej ortofotomapy i numerycznego modelu powierzchni terenu, z uwzględnieniem fotopunktów, przez porównywanie ich z ortoobrazami udostępnianymi w serwisie Google. Część końcowa zawiera uogólnione wnioski wyprowadzone na podstawie przeprowadzonych badań.
EN
The accuracy of models representing the shape of the land surface is important in environmental studies. Accurate model can be used to detect even small changes in the landform and landuse, as well as to develop a spatial model of water and soil pollution. Due to the fact that environmental studies are carried out on diversified areas in terms of landuse, this study indicated the appropriate methods for generating Digital Terrain Model (DTM) and Digital Surface Model (DSM). Both of them can be used in processes and analyzes research. Those analyzes mainly take into account the formation of the Earth’s surface in the context of hydrological, geomorphological and biological modeling. The example of practical use of hydrological modeling is a ISOK project, which goal is to reduce the danger and minimize losses caused by the floods. The main aim of this study was to select the appropriate method of generating regular models from airborne laser scanning. The data on which analysis was performed, were obtained for the area of Cracow city within the project ISOK. To achieve this goal, four methods available in ArcGIS, were selected: nearest neighbour, inverse distance weighted, triangulation with linear interpolation and triangulation with natural neighbour interpolation. Additionally several different sizes of the cell of regular model were selected: 0.125, 0.25, 0.5, 1, 2.5, 5 m. Each generated model has been studied in terms of a accuracy (Gaussian statistical model was used). Firstly the analysis was made for digital terrain model and digital surface model for one archive module of point cloud. For this stage, 48 models were generated. After that, the area of analysis was expanded. Because of similar results obtained by both triangulations methods in the first stage, only the method of triangulation with linear interpolation was studied. In the second stage of research, 54 models were generated for other archive modules of point cloud. The results of the two stages were compatible. It has been noticed that the nearest neighbour method is the most accurate for generating Digital Surface Models.
PL
Dokładność modeli reprezentujących ukształtowanie powierzchni terenu jest istotna w badaniach środowiska. Poprawnie wykonane modele mogą być wykorzystane do wykrywania nawet niewielkich zmian w ukształtowaniu i zagospodarowaniu terenu, a także do opracowania modelu przestrzennego zanieczyszczeń wód oraz gleby. Ze względu na to, że badania nad środowiskiem prowadzone są na obszarach zróżnicowanych pod kątem zagospodarowania terenu, w niniejszej pracy wskazano odpowiednie metody generowania Numerycznych Modeli Terenu (NMT) i Numerycznych Modeli Pokrycia Terenu (NMPT). Dane, na których wykonano analizy, były pozyskane dla obszaru miasta Kraków w ramach projektu ISOK. Aby osiągnąć założony cel, wybrano cztery metody dostępne w oprogramowaniu ArcGIS: najbliższego sąsiada, wagowanej odwrotnej odległości, triangulacji z metodą interpolacji liniowej i naturalnego sąsiada. Wybrano także kilka różnych rozmiarów oczek siatki modelu (0,125 m, 0,25 m, 0,5 m, 1 m, 2,5 m, 5 m). Każdy wykonany model został poddany analizom dokładnościowym - zastosowano model Gaussa. W pierwszym etapie badań wygenerowano 48 modeli dla arkusza chmury punktów zawierającego zróżnicowane klasy pokrycia terenu. W drugim wykonano dodatkowo 54 modele dla pozostałych badanych arkuszy. Wyniki obu etapów prac były ze sobą zgodne. Stwierdzono, że metoda najbliższego sąsiada jest najbardziej dokładna w przypadku generowania modeli NMPT. Natomiast w przypadku NMT badania nie wskazały jednoznacznie najlepszej metody interpolacji danych wysokościowych terenu.
PL
W artykule przedstawiono problematykę pomiarów geodezyjnych na terenach osuwiskowych w polskich Karpatach fliszowych. Wykorzystano metody fotogrametrii bliskiego zasięgu do cyfrowego obrazowania oraz określania wymiarów obszaru osuwiskowego za pomocą Bezzałogowych Systemów Latających (BSL). Badania wykonano na osuwisku położonym w miejscowości Węgierka, w gminie Roźwienica, w powiecie jarosławskim oraz na osuwisku położonym w miejscowości Rogi-Folwark w powiecie krośnieńskim. Wyznaczono środki rzutów poszczególnych zdjęć oraz elementy kątowej i wewnętrznej orientacji kamery. Umożliwiło to utworzenie modelu wysokościowego (TIN) osuwisk. Finalnym efektem było otrzymanie Numerycznego Modelu Pokrycia Terenu (NMPT) osuwiska z miejscowości Węgierka i ortofotomapy. Numeryczny Model Pokrycia Terenu osuwiska z oczkiem siatki 0,10 m pozwolił precyzyjnie określić położenie i wymiary budynków na obszarze osuwiska z miejscowości Węgierka. Nalot z kamerą wychyloną o 80° na osuwisku w miejscowości Rogi-Folwark ukazał ponadto miejsca o niskiej wartości kohezji i kąta tarcia wewnętrznego gruntu. Te obszary są najbardziej narażone na powstawanie w przyszłości dalszych ruchów masowych, powstawanie pęknięć i przesunięcia mas ziemnych. Obliczono dla nich Wskaźnik Bezpieczeństwa FS. Pozwolił on ustalić, w której części osuwiska prawdopodobieństwo wystąpienia kolejnych ruchów masowych ziemi w przyszłości jest większe. Współczynnik bezpieczeństwa oszacowany dla obszarów o niskiej wartości spójności gruntów wyniósł 2,52, a o niskiej wartości kąta tarcia wewnętrznego 6,83. Najbardziej niebezpieczne są strome skarpy dodatkowo podcinane przez potoki - dolna aktywna część osuwiska o współczynniku 2,52. Bezpieczniejsze są środkowe części stoku, które są łagodnie nachylone - górna część osuwiska, Współczynnik bezpieczeństwa tej części wynosi 6,83.
EN
The aticle present the problem of surveying on landslide areas in Polish flysch carpathians. We used close photogrammetry methods to digital imaging and determining area lanndslide dimensions using Unmanned Aerial Systems (UAS). Research were done on landslide located in Węgierka village, in Roźwienica commune, in Jarosław district and on landslide located in RogiFolwark village in Krosno district. Described the method of processing images obtained measuring non-metric camera mounted on UAS. Designed projections centres of individual images and elements of angular orientation and interior camera. This enabled the creation and texturing of Triangular Irregular Network (TIN) models of landslides. The final result was to receive the Digital Surface Model (DSM) and ortophotomap landslide from Węgierka village. Digital Surface Model (DSM) landslide with eyelt mesh 0.10 m with big precision defined localisation and dimensions buildings on landslide from Węgierka village. Flight mission with inclined camera (80°) showed places with low cohesion and angle of internal friction value on landslide from Rogi-Folwark village. This places are the most exposed for further mass movements, fissure formation and ground displacements. For this areas Factor of Safety (FS) was calculated. It allowed to check in which area of landslide probability of new mass movements in the future is bigger.
7
Content available Integracja satelitarnych modeli wysokościowych
PL
W artykule zaprezentowano metodę integracji danych wysokościowych z interferometrycznej misji satelitarnej SRTM (model SRTM-C, rozdzielczość 3", tj. około 90 m) oraz stereoskopowych pomiarów scen satelitarnych ASTER, pozyskanych w kanale bliskiej podczerwieni, do opracowania Numerycznego Modelu Pokrycia Terenu (NMPT) o rozdzielczości przestrzennej 1". Model ASTER charakteryzuje się większą rozdzielczością (1", tj. około 30 m), ale może wykazywać lokalne błędy o charakterze systematycznym, spowodowane głównie błędami dopasowania obrazów w obszarach o regularnej strukturze pól uprawnych. Opracowana metoda zakłada uszczegółowienie modelu interferometrycznego z wykorzystaniem modelu ASTER. Bazuje na modelu różnicowym obu NMPT poddanym działaniu filtra uśredniającego ważonego, co zachowuje w nim ewentualne błędy systematyczne. Przefiltrowany model różnicowy posłużył do poprawy modelu ASTER. Zaproponowaną metodę przetestowano na fragmencie obszaru centralnej Polski o powierzchni 31 tys. km2. Ocenę wizualną i ilościową otrzymanego zintegrowanego modelu względem danych źródłowych przeprowadzono dla trzech typów pokrycia terenu z wykorzystaniem profili terenowych oraz NMPT pozyskanego w ramach projektu ISOK. Wyboru obszarów o określonym typie pokrycia dokonano z wykorzystaniem bazy CORINE Land Cover. Miarą oceny dokładności modeli były błędy średnie liczone na podstawie różnic wysokości punktów interpolowanych z modelu oraz odpowiadających im punktów kontrolnych profili terenowych, pomierzonych techniką GPS, a także odchylenie standardowe różnic wysokości pomiędzy modelem referencyjnym ISOK a analizowanymi modelami. Ocena wizualna przeprowadzona została na fragmencie wydzielonym z całego obszaru opracowania. W wyniku zastosowania opracowanej metody otrzymany NMPT charakteryzuje się wyższą szczegółowością w porównaniu z modelem SRTM-C. Skompensowane zostały w nim również lokalne błędy systematyczne charakterystyczne dla modelu ASTER.
EN
The article presents the method of developing a 30-m spatial resolution DSM based on integration of height data from InSAR SRTM mission and the stereoscopic measurements of ASTER satellite images. The method involves the use of 30-m ASTER model for refinement of a 90-m interferometrie SRTM model. ASTER model has a higher resolution, but it can contain local systematic errors (due to incorrect image matching in areas of the regular pattern of agricultural parcels). The differential model is generated and next smoothed with weighted averaging filter. Such a model is used to correct the ASTER DSM. The method was tested in the area of 31,000 square kilometers located in central Poland. A visual and precise evaluation of the output model relative to source data was performed with the use of terrain GPS profiles and the detailed DSM based on airborne laser scanning (ALS) data for three types of land cover. The accuracy of models was assessed by RMSE calculated from a difference between point heights interpolated from the model and the same height points taken from terrain GPS profiles. Also the standard deviation of height difference between analyzed and ALS DSM was analyzed. In the new integrated DSM, more details were noticed compared to the SRTM DSM. The height errors typical for ASTER model were compensated. The vertical accuracy of the developed DSM is close to SRTM data.
PL
Ograniczone zasoby złóż paliw oraz ich rosnąca cena na rynku, a także postępujące w ostatnich latach zmiany klimatyczne sprawiły, że coraz więcej uwagi poświęca się środowisku oraz odnawialnym źródłom energii. Wychodząc naprzeciw wymienionym problemom, w artykule podjęto próbę analizy geometrii dachów wybranego osiedla domów jednorodzinnych w kontekście montażu kolektorów słonecznych. Do badań nad przedstawionym zagadnieniem wykorzystano dane pochodzące z lotniczego skaningu laserowego oraz obrysy budynków. Na użytek gospodarstw domowych dachy budynków wydają się być najodpowiedniejszą lokalizacją do montażu kolektorów słonecznych, dlatego przeprowadzone analizy zawężono do tych obszarów. Z uwagi na specyfikę samych urządzeń w analizach uwzględniono kilka czynników, takich jak: efekt zacienienia, minimalna powierzchnia, jak również nachylenie czy orientacja połaci dachowych. Właściwie dobrane kryteria klasyfikacyjne rastrowych modeli spadków, ekspozycji i usłonecznienia umożliwiły wskazanie obszarów dogodnych pod względem montażu kolektorów słonecznych, a tym samym stały się podstawą do określenia indywidualnych „predyspozycji słonecznych” dachów zabudowy mieszkalnej.
EN
The limited amount of fossil fuels, their growing price on the market and progressive climatical changes last years caused that more attention have been focused on environment and the renewable sources of energy. This paper presents the results of the analysis aiming at selection of roof areas suitable for the installation of photovoltaic devices. Airborne lasers scanning data combined with the digital topographic data were the basis for delimitation of the slope, exposure, and not shaded roof area.
PL
Niniejszy artykuł omawia metodykę wykonania inwentaryzacji zieleni na obszarze zurbanizowanym z wykorzystaniem danych fotogrametrycznych w postaci „prawdziwej” barwnej ortofotomapy (trueortho) w podczerwieni (CIR) oraz Numerycznego Modelu Pokrycia Terenu (NMPT) utworzonego z danych pochodzących z lotniczego skaningu laserowego (ALS) lub alternatywnie z automatycznej korelacji obrazów zdjęć lotniczych. Proces inwentaryzacji zieleni został przeprowadzony metodą klasyfikacji na podstawie analizy cech zawartych w pikselach georeferencyjnego trueortho z jednoczesnym uwzględnieniem danych wysokościowych NMPT w postaci grid. Dla przeprowadzenia tej klasyfikacji zastosowano oprogramowanie Erdas Imagine. Właściwy proces klasyfikacji był poprzedzony utworzeniem danych wejściowych do tego zadania. Dane te uzyskano w wyniku przetwarzania cyfrowych zdjęć lotniczych wykonanych kamerą UltraCam firmy Vexcel o rozdzielczości terenowej GSD = 10cm oraz chmury punktów pozyskanych techniką ALS. Przetwarzanie to obejmowało wygenerowanie Numerycznego Modelu Terenu w środowisku SCOP++ oraz Numerycznego Modelu Pokrycia Terenu w środowisku Opals i Inpho. Porównanie utworzonych NMPT z dwóch różnych źródeł danych wykazało ich pełną spójność i jednorodność oraz możliwość zastosowania obydwu modeli do generowania produktu trueortho z cyfrowych zdjęć lotniczych. Prace wykonano na fotogrametrycznej stacji cyfrowej INPHO. „Prawdziwą” cyfrową ortofotomapę generowano zarówno ze zdjęć czarnobiałych w podczerwieni (NIR) jak i zdjęć barwnych (CIR). Przeprowadzona klasyfikacja zieleni w oprogramowaniu Erdas Imagine dowiodła, iż oprogramowanie to w zupełności nadaje się do przeprowadzenia klasyfikacji na podstawie cech zawartych w pikselach z jednoczesną analizą danych wysokościowych. Wykorzystanie równoczesne zarówno danych z lotniczego skaningu laserowego jak i zdjęć barwnych w podczerwieni pozwoliło na wykonanie dokładnej klasyfikacji zieleni na bardzo trudnym terenie, jakim jest zabudowany obszar miejski. Rezultaty klasyfikacji poddano ocenie dokładności poprzez ich wizualną weryfikację w aplikacji Google Street View. W czasach, gdy platformy lotnicze posiadają na swoim pokładzie jednocześnie rejestrujące dwa sensory t.j. wysokorozdzielczą kamerę cyfrową oraz skaner laserowy fuzja danych staje się powszechnie stosowaną metodą. Dzięki temu możliwe jest połączenie zalet obydwu typów danych, a przeprowadzona inwentaryzacja roślinności na obszarze miasta jest jednym z wielu możliwych zastosowań połączenia danych ALS i CIR.
EN
This paper discusses the methodology of the implementation of an inventory of vegetation in an urban area using photogrammetric data in the form of color NIR "true-orthophotomap" (true-ortho) and the digital surface model (DSM) created with data from airborne laser scanning, or alternatively, with an automatic correlation of images. The vegetation inventory was conducted by classification on the basis of the characteristics contained in pixels of georeferenced true-ortho while taking into account the elevation data in the form of gridded DSM. To carry out the classification Erdas Imagine software was used. The correct classification process was preceded by the creation of the input data for this task. This data was obtained from the processing of digital aerial photos taken by a Vexcel UltraCam camera with the ground resolution GSD = 10cm and point clouds acquired from ALS. This processing included the generation of digital terrain model in the SCOP++ environment and the digital surface model in an Opals and Inpho environment.The Comparison of DSM created from two different sources of data showed the overall consistency and uniformity and the ability to use both models to generate a true-ortho product from digital aerial photographs. The work was performed on an INPHO photogrammetric workstation. "True-ortho" was generated from both the black and white NIR images and colour images. The classification carried out with the Erdas Imagine software proved that this software is suitable for classification based on the features extracted from the pixels with the simultaneous analysis of elevation data. Simultaneous use of data both from airborne laser scanning and colour infrared images made it possible to make an exact classification of vegetation on very difficult terrain, like built up urban areas. The results of the classification accuracy were evaluated by the visual verification in Google Street View application. At a time when airborne platforms are equipped by both sensors, ie high resolution digital camera and laser scanner, data fusion is a commonly used approach. This makes it possible to combine the advantages of both types of data, and carrying out an inventory of the vegetation in the town area is one of many possible applications of the combined data from ALS and CIR.
PL
W niniejszej publikacji referacie opisano analizę doboru podstawowych parametrów lotniczego skanowania laserowego mających wpływ na otrzymanie modeli wysokościowych o założonych, referencyjnych parametrach jakościowych na przykładzie lotniczego skanowania laserowego organizowanego w ramach wypełnienia zaleceń dyrektywy powodziowej w Polsce. Analiza taka legła u podstaw określenia warunków technicznych dla bardzo dużego projektu, którego realizacja nadal trwa. Rozważaniom podlegały nie tylko uwarunkowania techniczne, ale również możliwości organizacyjne i ekonomiczne. Pod uwagę wzięto także zakres prac oraz ograniczenia czasowe na ich realizację, co – przy uwzględnieniu wydajności prac – narzuca organizację prac. Spośród parametrów technicznych, analizie poddano m.in.: gęstość chmury punktów ALS, dokładność georeferencji chmur punktów, warunki meteorologiczne pozyskiwania danych ALS, parametry dokładnościowe produktów pochodnych tj. numerycznych modeli wysokościowych. W tak złożonym projekcie (podział robót na podobszary, wielu wykonawców, kilka produktów końcowych, podział na wiele etapów dostaw) kluczowym jest również odbiór i kontrola jakości, o której efektywności świadczy jej organizacja, zakres i przyjęte kryteria.
EN
The paper analyzes the selection of main parameters of ALS system having an impact on acquisition of digital elevation models described by the assumed and exorbitant qualitative characteristics on the basis of airborne laser scanning project organized as a part of recommendations included in the Floods Directive in Poland. Such an analysis was the basis for determining conditions for a huge project, whose implementation is still ongoing, as well as its organizational and economic possibilities. Another subject for consideration was the scope of the planned works and time limits for their implementation that imposed the schedule of the project with respect to the efficiency of the work. Among the technical characteristics the authors investigated the density of the LiDAR points, georeferencing of point clouds, meteorological conditions during data acquisition and parameters describing the accuracy of the final products, namely digital elevation models, were also investigated. In such a complex project (the division of the whole project for subareas, many contractors, several final products and many stages of delivery product acceptance as well as quality control are key issues, whose effectiveness is proved by good organization, their scope and the adopted criteria.
PL
NMPT stanowią w bazach danych GIS coraz częściej samodzielny produkt, jak również są niezbędnymi danymi inicjalnymi do tworzenia innych produktów takich jak modele 3D miast, true-ortho czy klasyfikacja obiektowa. W niniejszym artykule prezentowane są wyniki badań praktycznych generowania NMPT na potrzeby klasyfikacji zieleni na terenach zurbanizowanych. Posiadane dane źródłowe pozwoliły na wytworzenie potrzebnego produktu zarówno stosując metodę automatycznego dopasowania cyfrowych zdjęć wykonaną kamerą Ultra Cam-D firmy Vexel, jak również poprzez przetwarzanie chmury punktów zarejestrowanych techniką lotniczego skaningu laserowego (ALS). Do utworzenia NMPT z zastosowaniem techniki automatycznego dopasowania zastosowano program Match –T DSM firmy INPHO. Program ten optymalizuje konfiguracje stereogramów z bloku wykorzystywanych zdjęć do tego procesu, co gwarantuje wysoką dokładność wysokościową wyznaczanych punktów i minimalizuje obszary martwych pól. Ocena uzyskanej dokładności wysokościowej punktów metodą matchingu została dokonana poprzez porównanie NMPT wytworzonego programem Match–T DSM z modelem wygenerowanym na podstawie danych lidarowych. Dalsze przeznaczenie tworzonego NMPT zadecydowało, że został on utworzony w siatce GRID o wymiarze oczka siatki 1m. Przy takich parametrach wyznaczono model różnicowy, który pozwolił na wyznaczenie dokładności względnej porównywanych modeli. Przeprowadzona analiza wskazuje, że generowanie NMPT techniką automatycznego dopasowania cyfrowych zdjęć jest konkurencyjne względem modeli opracowanych z chmury punktów pozyskanej techniką ALS. Dlatego też jeżeli na dany obszar terenu wykonywane są cyfrowe zdjęcia lotnicze o geometrii minimalizującej w praktyce obszary martwych pól dodatkowa rejestracja przy pomocy techniki skaningu laserowego wydaje się zbędna.
EN
Digital Surface Models (DSM) areused inGISdatabasesas single product more often. They are also necessary to create otherproducts such as3D city models, true-ortho and object-orientedclassification. This article presents results of DSM generatation for classification of vegetation in urban areas. Source data allowed producing DSM with using of image matching method and ALS data. The creation of DSM from digital images, obtained by Ultra Cam-D digital Vexcel camera, was carried out in Match-T by INPHO. This program optimizes theconfiguration ofimages matching process, which ensures high accuracy andminimize gap areas. The analysis of the accuracy of this process was made by comparison of DSM generated in Match-T with DSM generated from ALS data. Because of further purpose of generated DSM it was decided to create model in GRID structure with cell size of 1 m. With this parameter differential model from both DSMs was also built that allowed determining the relative accuracy of the compared models. The analysis indicates that the generation of DSM with multi-image matching method is competitive for the same surface model creation from ALS data. Thus, when digital images with high overlap are available, the additional registration of ALS data seems to be unnecessary.
12
Content available remote Ukształtowanie terenu - prace tematycznej grupy roboczej INSPIRE
PL
Specyfikacja danych tematu Ukształtowanie terenu, podobnie jak pozostałych tematów określonych w załącznikach II i III do dyrektywy INSPIRE, jest w formie dokumentu roboczego, wchodzi w fazę 3 harmonogramu prac, a do połowy przyszłego roku przejdzie przez fazę 4, tj. opracowania przepisów implementacyjnych. Obecnie - jeszcze robocze redakcje specyfikacji danych - pozwalają już czerpać z nich proponowane rozwiązania i wzorce. Korzystanie z nich, przez organy i organizacje zajmujące się infrastrukturami i systemami informacji przestrzennej, pozwoli odnieść korzyści leżące u podstaw inicjatywy INSPIRE (Gaździcki, 2011).
EN
The paper describes the works of the Thematic Working Group "Elevation" (FWG-EL), one of the themes in annex I of the INS? IRE Directive. The process of the experts selectionfor TWG-EL is given. The schedule of works is introduced. The scope of the "Elevation" and the methods of the TWG-EL members study of the Data Specification are presented in detail. Chosen technical problems, discussed in the course of works, are introduced. The present situation of the elevation data in the country and their conformity with requirements of INSPIRE is made closer.
PL
Obecnie ponad połowa populacji ludzi na świecie żyje na terenach zurbanizowanych. Problem wizualizacji obszarów zurbanizowanych za pomocą danych fotogrametrycznych pojawił się już na początku tego wieku. Trójwymiarowe modele miast są opracowywane dla większych miast już od kilku lat i obecnie znajdują szerokie zastosowanie w wielu dziedzinach nauki i gospodarki. Między innymi: w planowaniu przestrzennym i urbanistycznym, nawigacji samochodowej oraz systemach informacji geograficznej. Istnieje wiele metod wykonywania trójwymiarowych modeli miast. Najważniejsze z nich to opracowanie modeli ze zdjęć lotniczych i satelitarnych na drodze cyfrowej korelacji obrazów, a w ostatnich latach równie popularną metodą stało się generowanie Numerycznych Modeli Pokrycia Terenu (NMPT) z danych z lotniczego skaningu laserowego. Dane takie umożliwiają wykonanie NMPT, a następnie na drodze filtracji tych danych opracowuje się modele kolejno najpierw wykrywając budynek, ekstrahując jego krawędzie i rekonstruując geometrię. W artykule przedstawiona zostanie analiza możliwości wykorzystania lotniczego skaningu laserowego do opracowywania modeli 3D miast oraz metody filtracji chmury punktów. Poruszone zostaną kwestie związane z charakterem danych z Lotniczego Skaningu Laserowego (LSL) oraz przeanalizowane szczegółowe wytyczne dotyczące modelowania terenów zurbanizowanych - czyli standard CityGML opracowany przez Open Geospatial Consortium, uwzględniając generalizację tych modeli.
EN
Nowadays, more than 50% of human population lives in the urban areas, therefore there is an increasing demand for 3D urban modelling. The issue of visualization of cities have appeared at the beginning of this century. The three-dimensional city models exist since a few years and currently this building information is extremely important for many applications such as urban planning, telecommunication, navigation, geographic information systems or environment monitoring etc. There are many methods of 3D city models generation. The most important are: models generation on the basis of aerial and satellite imagery (automatic image correlation) and in the past a few years also very popular method was aerial laser scanning, commonly named LIDAR. It enables acquiring data to generate Digital Surface Models. This DSMs have to be filtrated and then from this data we detect buildings, extract them and as the last phase - there is a building reconstruction by boundary extraction. This paper presents the analysis of using LIDAR data to accurate building detection and extraction for the use of 3D city modelling and it also reviews methods of LIDAR point cloud filtration and methods of 3D city modelling from aerial laser scanning systems. I will describe also some analysis connected with CityGML - the standard created by Open Geospatial Consortium. CityGML is a common semantic information model for the representation of 3D urban objects that can be shared over different applications, characterized by generalization - different accuracies and minimal dimensions of objects.
PL
Celem prezentowanej pracy było opracowanie zautomatyzowanych procedur weryfikacji atrybutu wysokości drzewostanów zapisanych w bazie danych SILP/LAS dla zasięgu całego obrębu nadleśnictwa, w oparciu o dane pozyskane technologią lotniczego skaningu laserowego. Badania miały potwierdzić przydatność stosowania w praktyce leśnej nowoczesnych technologii teledetekcyjnych, które poza możliwością pomiaru wysokości wszystkich drzewostanów, w szybkim czasie dają wyniki weryfikowalne i obiektywne w odniesieniu nie tylko do wybranych cech taksacyjnych drzew, ale również zasięgu (granic) i przestrzennej zmienności cechy w obrębie pododdziału. W ramach prowadzonych badań opracowano i przetestowano metodykę automatycznego procesu przetwarzania chmur punktów ALS, którą zintegrowano z analizami przestrzennymi GIS, w celu korekcji błędów geometrii obiektów podstawowych tworzących LMN, a także detekcji: luk, polan, obszarów nowych zrębów, wiatrołomów czy obszarów o niskim zwarciu drzewostanu (halizny). Wyniki automatycznego procesu weryfikacji i aktualizacji baz danych geometrycznych i atrybutowych (wysokość) w oparciu o technologię ALS porównano do danych referencyjnych opracowanych metodami tradycyjnymi na drodze ekranowej wektoryzacji ortofotomapy lotniczej, wzmocnionej informacją o wysokości drzewostanu (zNMPT). Dane referencyjne dotyczące wysokości drzewostanu pochodziły z baz SILP/LAS, które były aktualizowane w oparciu o informacje zebrane w terenie metodami tradycyjnymi w roku 2006, tj. w roku poprzedzaj?cym nalot ALS.
EN
The aim of the research was implementation of airborne laser scanning (ALS) data for automated updating of compartment borders (LMN . forest digital map) and height attribute (SILP . descriptive database). The Milicz forest district was chosen as the test area. New fields in the database were filled with the mean stand height value and the difference to existing height value from the last inventory (2006). The updated compartment height values were calculated without gaps and without the 5 m border buffer belt of the stand as 95th percentile of normalized height point cloud values. In order to compare these results with tree height values from the forest inventory, raster layers (GRID) representing both heights were generated and map algebra was used to calculate the differences (HDiff). The study area consisted of 1,434 compartments with total area equal to 5,353.82 ha, from which 1084 compartments were pine stands (4,393.43 ha; 82.06%). The height values from the descriptive SILP/ LAS database were on average lower with regard to all analyzed tree species and stands than the heights from ALS data. The difference was equal to +2,3m (3.2m for absolute values). It was found that numerous pine young stands significantly contributed to the height difference value due to their outdated height parameter, which sometimes even reached the value by 3.13m lower then ALS data. The research confirmed that the use of modern remote sensing technologies like ALS in forest practice opens a new space in the quick and precise forest inventory. The proposed automated procedures of stand height verification based on airborne laser scanning data allow for fast assessment of geometric and descriptive data update status.
PL
Badania przeprowadzono na podstawie danych pozyskanych z zintegrowanego systemu pomiarowego cyfrowej kamery lotnicza ADS40, dla których wielkość terenowego piksela wynosiła 20 cm. Dane obejmowały obszar nizinny, w większości rolniczy, częściowo pokryty lasem, z czego około 20% badanego obszaru stanowiły tereny zurbanizowane. W oparciu o zobrazowania ADS40 zbudowano modele stereoskopowe, które wykorzystano do pomiarów: manualnych i autokorelacyjnych obiektów przestrzennych. Zobrazowania poddano wstępnej korekcji geometrycznej, a następnie orientacji w procesie aerotriangulacji metodą niezależnych wiązek. Następnie przeprowadzono pomiar półautomatyczny, z którym związany był szereg czynności począwszy od interpolacji, filtracji i klasyfikacji, uzyskując w ten sposób trójwymiarowy model powierzchni dachów, a także wykonano manualny pomiar linii szkieletowych budynków. Stwierdzono, że algorytm autokorelacyjny programu Match-T nie jest w stanie zrealizować pomiaru punktów na powierzchniach bocznych budynku ze względu na zbyt mały stosunek bazowy zobrazowań. Dla pomiarów autokorelacyjnych na obrazach cyfrowych obejmujących obszar zurbanizowany o dużym stopniu pokrycia roślinnością procentowe wydobycie elementów zabudowy wyniosło około 85%.
EN
The research presented is based on data acquired by the integrate measuring system of ADS40 digital camera. The data were collected from a lowland area, mostly agricultural, partly covered with forest, of which about 20% was urbanized area. Base on the ADS40 imagery, stereoscopic models were built and used to manual and autocorrelation measurements of three-dimensional objects. Before the correct orientation of stereoscopic models was obtained, the images were submitted to geometrical correction, and next to orientation in the process of aerotriangulation with the method of bundle adjustment. Next, a semi-automatic measurement was conducted which was connected to interpolation, filtration and classification, obtaining a three-dimensional model of the surface of roofs, and also performing a manual measurement of the skeletal line of buildings. It was found that the autocorrelation algorithm of the program Match-T could not realize the measurement of points on the lateral faces of the building because of a too small base relation of images. For autocorrelation measurements on digital images that included an urbanized area with high degree of vegetation cover the extraction of the building elements amounted to about 85%.
PL
Celem pracy było zaimplementowanie danych pozyskanych technologią lotniczego skaningu laserowego (ALS) w zautomatyzowanej procedurze aktualizacji granic pododdziałów, tj. przebiegu wektorów obiektów podstawowych Leśnej Mapy Numerycznej (LMN) oraz weryfikacji atrybutu wysokości drzewostanów, zapisanej w bazie danych Systemu Informatycznego Lasów Państwowych (SILP). Obiektami testowymi były obręby w Nadleśnictwach Milicz (Milicz) i Chojna (Piasek). Obszar badań w każdym z obrębów obejmował ok. 6 000 ha lasów, z czego blisko 80% stanowiły drzewostany sosnowe. Prace rozpoczęto od aktualizacji przebiegu granic wektora (SHAPE) pododdziałów zapisanych w bazie geometrycznej LMN w oparciu o modele generowane z chmury punktów ALS oraz obraz cyfrowej ortofotomapy. Następnie przeprowadzono aktualizację atrybutowej bazy danych SILP/LAS. Określenie wysokości całego drzewostanu oparto na powierzchni pododdziału z wyłączeniem luk, wykorzystując analizę chmury punktów ALS, tj. 95 percentyl. W celu porównania wyników do danych referencyjnych zbieranych metodami tradycyjnymi (SILP), wygenerowano modele rastrowe (GRID) wysokości drzewostanów określone metodą ALS (HALS) oraz HSILP. W obu obrębach stwierdzono zaniżenie wartości wysokości z bazy SILP/LAS. Średnia różnica (HDiff) wyznaczenia wysokości metodą ALS w stosunku do SILP wyniosła dla obrębu Piasek i Milicz, przy uwzględnieniu znaków odchyłek, odpowiednio +0.9 m oraz +2.3 m, natomiast w przypadku wartości bezwzględnych 2.1 m oraz 3.2 m. Ustalono, że zasadniczą rolę w wartości błędu odegrały licznie występujące drzewostany młodszych klas wieku.
EN
Automatic processing of remotely sensed data, like ALS point clouds, is crucial for modern economy, including forestry. The aim of the study was to develop automated procedures for digital forest map (LMN) revision and automated verification of the attributes (height) stored in the forest descriptive database (SILP), both based on airborne laser scanner datasets. The study areas were the Piasek (Chojna) and Milicz management forest districts, covering about 6,000 ha (80% Scots pine stands). The workflow of verifying and updating a digital map started with updating the compartment borders, which was based on nDSM (created from classified point cloud) and digital ortophoto (RGB+NIR) as well. The developed method, based on normalized ALS point cloud and GIS analysis, provided instant possibility for compartment border update, revealing additional objects like gaps or tree biogroups. The total area of automatically detected objects was around 15% lower when compared to the reference data for Chojna forest district and 10% higher regarding Milicz forest district. Around 84.0% and 85.5% of the gaps matched the reference for Chojna and Milicz forest districts, respectively. A method based on point cloud distribution (95th percentile) within compartment borders to assess its height was presented in the study. The results were compared to a height model (GRID) generated from descriptive database. For both the study areas the height stored in SILP database was lower than the height value derived from ALS data. The difference was equal to +0.9 m (Chojna; absolute difference 2.1 m) and +2.3 m (Milicz; absolute difference 3.2 m). When the stand area was used as a weight in the difference calculation, the difference values (HDiff) changed to +0.6 m (Chojna; absolute difference1.5 m) and +2.4 m (Milicz; absolute difference 2.7 m). Concerning the deciduous stands, the difference was higher (~+1 m) than for the Scots pine stands. The analysis performed confirms the possibility of using airborne laser scanning for geometrical (LMN) and descriptive (SILP/height) database updating. Periodical stand monitoring based on ALS technology can guarantee keeping the databases up to date without the necessity of costly and time consuming field measurements.
PL
Ortofotomapa jest obecnie najbardziej popularnym produktem kartograficznym. W obszarze zabudowanym obrazy budynków są jednak przesunięte zgodnie z rzutem środkowym, a część terenu jest zakryta (tzw. „martwe pola”). Tej wady nie ma „prawdziwe” orto (true-ortho). Do jego wykonania konieczny jest jednak numeryczny model pokrycia terenu (NMPT) z przestrzennymi modelami budynków. W artykule podjęto dyskusję uwarunkowań technicznych generowania trueortho. Rozważane są szczególne wymagania do wykonawstwa zdjęć lotniczych, generowania brył budynków z ręcznej stereodigitalizacji modelu zbudowanego ze zdjęć, z automatycznego dopasowania obrazów, oraz danych skaningu laserowego (LIDAR). Badany jest wpływ danych źródłowych na jakość wynikowego true-ortho, oraz koszt jego wytworzenia. Prezentowane są wstępne wyniki. Prace są kontynuowane.
EN
Digital orthophotomap is at present the most popular cartographic product. However, in built-up areas, images of buildings are displaced according to the central projection, and part of the terrain is invisible (the so-called "occluded area"”). A true orthomap does not have such defects. The digital surface model (DSM) is however necessary, with spatial models of buildings to make it. The paper discusses technical aspects of the true-ortho generation. Special requirements relating to the execution of air photos are considered, along with the analysis of generating the building models based on the manual stereo digitalisation of the terrain model built on the basis of photos, automatic image matching, and laser data (LIDAR). The influence of source data on the quality of the outcome true-ortho, and the costs of its producing are reviewed. Preliminary results are presented. Works are continued.
PL
Ortofotomapa cyfrowa jest istotnym składnikiem baz danych GIS. Posiada ona jednak szereg wad w obszarach zabudowanych. Wady te są eliminowane w procesie generowania true-ortho z uwzględnieniem precyzyjnego Numerycznego Modelu Pokrycia Terenu, czyli z uwzględnieniem struktury dachów. Model NMPT decyduje o jakości produktu finalnego. Proces generowania NMPT składa się z szeregu etapów technologicznych przebiegających przy różnym stopniu automatyzacji. NMPT w obszarach o dużym zagęszczeniu budynków i skomplikowanej strukturze dachów tworzony automatycznie nie spełnia najczęściej kryteriów jakościowych. Dlatego też przy tworzeniu precyzyjnych true-ortho, jest on w dalszym ciągu pozyskiwany manualnie. Programy tworzące true-ortho wczytują dane wektorowe w formacie DXF, który jednak nie zapewnia odpowiedniej kontroli zapisu struktury dachów. Wykorzystując oprogramowanie OrthoMaster firmy Inpho, wymaganych jest szereg kryteriów dla danych inicjalnych opisujących strukturę dachów. W niniejszym artykule omówiono funkcjonalność, tworzonych w ramach prowadzonego projektu badawczego, aplikacji do odpowiedniego zapisu danych wektorowych, podczas manualnego pozyskiwania i edycji linii strukturalnych dachu. Zadaniem tych aplikacji jest korekta występujących błędów w postaci przecinania się obrysów dachów i kalenic. Utworzone aplikacje programowe badają i korygują odpowiednie kryteria geometryczne i poprawiają zapisy wektorowe pozyskanych typów obiektów wprowadzanych ostatecznie do programu generującego true-ortho. Opracowane aplikacje programowe w sposób istotny zwiększają efektywność i jakość tworzonego NMPT i wtórnie produktu końcowego w postaci true-ortho.
EN
Orthophoto is a relevant component of the GIS database. However it has several drawbacks in urban areas, which can be eliminated when true ortho, based on a precise Digital Surface Model, is applied. Such DSM takes into account the structure of roofs. The DSM model plays a key role in determining the quality of the final product. The generation of the DSM process consists of a series of technological stages working with different levels of automation. The DSM for very densely built-up areas and the complex structure of roofs usually does not meet the quality requirements when an automatic process is applied. Therefore a true ortho DSM should still be manually prepared if it is to be accurate. Software for true ortho generation usually requires the vector data in DXF format as an input - which does not provide proper control for the roof structures. Using Inpho OrthoMaster software, several criteria have to be fulfilled for the initial data which describe the roof structures. In this paper, the functionality of the computer programs prepared by the authors to adequately describe vector data used during the manual acquisition and editing of the structural lines of the roofs was presented. The task of those programs is to correct existing errors like crossing roof boundaries and combs. The software which has been prepared allows one to analyse and adjust the required geometric criteria and correct the vector description of the types of object required which in the end are entered into the program generating true ortho. Such programs considerably improve the effectiveness of producing DSMs and also accelerate the whole process of true ortho production.
PL
Niniejszy artykuł prezentuje rezultaty badań uzyskane w zakresie budowy gęstego numerycznego modelu pokrycia terenu (NMPT) na podstawie chmury punktów generowanego przy pomocy programu Match-T DSM firmy INPHO. Do badań wykorzystano zdjęcia cyfrowe sporządzone kamerą Ultra Cam-D o pikselu terenowym 9 cm co pozwala przyjąć, że wyznaczone parametry jakościowe są reprezentatywne dla obszarów miejskich – zurbanizowanych. Określono istotne czynniki, które wpływają na przebieg automatycznego procesu korelacji. Finalnie na obiekcie eksperymentalnym uzyskano NMPT w strukturze GRID o rozmiarach 0.5 m wygenerowanej przeciętnie z ponad 30 punktów źródłowych przypadających na jedno oczko, wyznaczonych w procesie automatycznej korelacji zdjęć. Jakość geometryczną tak utworzonego produktu oceniono poprzez porównanie go z danymi pozyskanymi dla tego samego terenu techniką lotniczego skaningu laserowego (ALS). Utworzone wysokościowe modele różnicowe potwierdzają, że NMPT utworzony techniką automatycznej korelacji cyfrowych zdjęć lotniczych charakteryzuje się dokładnością wysokościową wyższą niż 0.20 m. Dodatkowo stwierdzono, że przy zastosowaniu większego pokrycia podłużnego i poprzecznego zdjęć następuje znaczne ograniczenie martwych pól (gdzie punkty NMPT nie są wyznaczane). Stosowanie stereogramów o zmiennym stosunku bazowym prowadzi do utworzenia NMPT o zróżnicowanej charakterystyce dokładnościowej. Przeprowadzone badania wskazują, że tworzenie gęstego NMPT drogą dopasowania obrazów zdjęć cyfrowych może być konkurencyjne do uzyskiwanego z lotniczego skaningu laserowego.
EN
This paper presents the evaluation of very dense DSM received from point clouds generated with Match-T DSM software. The digital photographs were taken with an Ultra Cam-D camera. The received GSD of 10 cm can be representative for very dense urban areas. The main factors which had an influence on the matching process were determined. The final DSM with 0.5 metre grid points was generated from a very dense cloud of points (30 points for each grid point on average). To evaluate the quality of this product, the DSM from imagery matching was compared with DSM generated from LIDAR data. The differential elevation models have confirmed that the DSM from imagery matching has accuracy better than 0.20 m. In addition, it was observed that by using larger overlap between photographs in and between strips, the obscured areas are considerably limited. However, it was also found, that by using stereo-pairs with various base to flying height ratios, DSMs with different accuracy can be obtained. In conclusion, the research has confirmed that the dense DSM from imagery matching is competitive with that from LIDAR data.
PL
Przedmiotem prezentowanych analiz było testowanie metodyki przetwarzania lotniczych danych lidarowych dla potrzeb tworzenia numerycznego modelu terenu (NMT) i numerycznego modelu powierzchni terenu (NMPT). Testowanie przeprowadzono w oparciu o dane lidarowe udostępnione przez instytut badawczy UE. Obszar testowy obejmował okolice Ispry we Włoszech. Do badań wykorzystano oprogramowanie Terrasolid (TerraScan, TerraModeler) oraz Geomedia. Testowano metodykę przetwarzania danych lidarowych i badano dokładność wewnętrzną i zewnętrzną NMT. Optymalna długość trójkąta w TerrScan wynosiła 45 m. Wewnętrzną dokładność NMT (porównanie siatki NMT z danymi pomiarowymi z lidara) oszacowano w zakresie: 10-30 cm. Porównanie NMT z pomiarem GPS wykazało błąd systematyczny 50 cm, a odchylenie standardowe 20-30 cm. W artykule zostały zamieszczone wyniki badań prowadzonych w ramach projektu UE, JRC. Natomiast niniejsza publikacja została przygotowana w ramach projektu AGH nr: 11.11.150.949.
EN
The analysis was aimed at testing of aerial lidar data for Digital Terrain Model (DTM) and Digital Surface Model (DSM) generation. Lidar data wereobtained from The JRC , an EU research institute. The test area was located near Ispra, Italy. There were 5 test areas: 3 of them covered a flat JRC region and 2 covered the urban, modulated surface of Ispra near the lake. The TerraScan and Geomedia software packages were applied for data processing. Lidar data processing algorithms and DTM inner and external accuracy were tested. In the ground point classification using the Terrasolid, the triangle length and interaction angle were tested. The optimal triangle length in the TerraScan was found to amount to 45 m. The first phase involved generation of a DTM; subsequently, a DSM was developed basedon lidar cloud point classification (low, middle and high vegetation, and buildings). The accuracy analysis was performed using a DTM with 0.1 m and 1 m pixel size. The resolution of 0.1 m was chosen to render the DTM as comparable as possible to the density of lidar points. However ,resolution of 1 m was also tested because of its usual application in DTM generation from lidar data. Two kinds of accuracy were tested. We called them the inner (comparison of DTM and lidar data) and the external (comparison of DTM and GPS RTK) accuracy. The inner DTM accuracy was estimated at 10-30 cm. The DTM and GPS comparison allowed to determine the systematic error of 20-30 cm and standard deviation of 50 cm. The accuracy (inner and external) obtained was lower than expected. The future research should explain these phenomena. The work was supported by the AGH project No. 11.11.150.949
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.