Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  NETD
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
NETD (Noise Equivalent Temperature Difference) parameter of infrared systems is the important parameter that allows determining the limit of temperature measurement of tested objects. Currently, the commercially available devices have the NETD < 20 mK. The infrared (IR) detectors and accompanying electronic circuits generate noise. In consequence, it is difficult to achieve the high level of signal-to-noise ratio (SNR) while measuring temperature. This paper presents a method of measuring the root mean square (RMS) value of alternating current, using a single-detector high-speed IR system for detecting 100 Hz harmonic spectral component of temperature, whose value is certainly below NETD limit.
PL
Parametr NETD (ang. Noise Equivalent Temperatura Difference) dla systemów podczerwieni (IR) jest ważnym parametrem pozwalającym określić dolną granicę pomiaru temperatury badanych obiektów. Obecnie dostępne na rynku chłodzone kamery termowizyjne charakteryzuje parametr NETD < 20 mK. Detektory podczerwieni i towarzyszące im obwody elektroniczne generują szum. W konsekwencji trudno jest uzyskać wysoki poziom stosunku sygnału do szumu (SNR) w systemach radiacyjnego pomiaru temperatury. W artykule przedstawiono metodę pomiaru wartości skutecznej prądu przemiennego stosując system IR z pojedynczym detektorem o dużej częstotliwości generacji próbek. Metoda polega na pomiarze składowej harmonicznej widma temperatury o częstotliwości 100 Hz, której wartość jest znacznie mniejsza od poziomu określonego przez parametr NETD.
2
Content available remote IR detection with uncooled focal plane arrays. State-of-the art and trends
EN
The emergence of uncooled detectors has opened new opportunities for IR detection for both military and commercial applications. Development of such devices involves a lot of trade-offs between the different parameters that define the technological stack. These trade-offs explain the number of different architectures that are under worldwide development. The key factor is to find a high sensitivity and low noise thermometer material compatible with silicon technology in order to achieve high thermal isolation in the smallest area as possible. Ferroelectric thermometer based on hybrid technology and electrical resistive thermometer based (microbolometer) technology are under development. However, ferroelectric material suffers from the difficulty to achieve a high figure of merit from thin film that is needed for monolithic structure development. Besides, the microbolometer technology, well adapted for thin film process, leads to higher performance at the expense of more complex readout integrated circuit design. LETI and ULIS have been chosen from the very beginning to develop first, a monolithic microbolometer technology fully compatible with commercially available CMOS technology and secondly, amorphous silicon based thermometer. This silicon approach has the greatest potential for reducing infrared detector manufacturing cost. After the development of the technology, the transfer to industrial facilities has been performed in a short period of time and the production is now ramping up with ULIS team in new facilities. LETI and ULIS are now working to facilitate the IRFPA integration into equipment in order to address a very large market. Achievement of this goal needs the development of smart sensors with on-chip advanced functions and the decrease in manufacturing cost of IRFPA by decreasing the pixel pitch and simplifying the vacuum package. We present in this paper the new designs for readout circuit and packages that will be used for 384×288 and 160×120 arrays with a pitch of 35 um and advanced results on 35 žm pixel pitch arrays. Thermographic application needs high stable infrared detector with a precise determination of the amount of absorbed infrared flux. Hence, infrared detector with internal temperature stabilized shield has been developed and characterised. The results will be presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.