The paper is aimed to investigate the reliability metrics of a multi-unit fault-tolerant control (FTC) system wherein the units are subject to failure and those are repairable by two heterogeneous servers. Server 1 remains permanently available for essential service of failed units, whereas server 2 goes on vacation and renders service based on the N-policy threshold, which may also provide optional and essential services. Server 1 may break down at a steady rate during its servicing period but immediately gets repaired and resume servicing the failed units. When the working unit fails, the available warm standby unit holds responsibility for the smooth operation of the system. The transition of standby units to operational mode may be unsuccessful with switching failure probability. We develop a Markovian model to obtain the steady-state probabilities. We explore computational and sensitivity analysis of different performance measures for various variability of the parameters.
This paper investigates an N-policy GI/M/1 queue in a multi-phase service environment with disasters, where the system tends to suffer from disastrous failures while it is in operative service environments, making all present customers leave the system simultaneously and the server stop working completely. As soon as the number of customers in the queue reaches a threshold value, the server resumes its service and moves to the appropriate operative service environment immediately with some probability. We derive the stationary queue length distribution, which is then used for the computation of the Laplace– Stieltjes transform of the sojourn time of an arbitrary customer and the server’s working time in a cycle. In addition, some numerical examples are provided to illustrate the impact of several model parameters on the performance measures.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.