Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Munzur River
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this study, predictions were made on the growth performance of Alburnus sellal Heckel, 1843 from the Munzur River using back propagation artificial neural networks and ANN algorithms. Statistical growth models used in fish biology and results obtained from artificial neural networks were compared. A total of 239 samples were used in this comparison. It was determined that the population is distributed across age groups 0–VII. The relationship between length and weight was calculated as W = 0.0046L3.198 for all individuals. The von Bertalanffy growth parameters were calculated for all individuals: Lt = 21.93 [1 – e–0.158 (t + 2.11)]; Wt = 102.29 [1 – e–0.158 (t + 2.11)]3.198. The growth performance index (Ф’) value was 1.880 for all individuals. The condition factor varied between 0.479 and 1.115 for females and between 0.533 and 1.076 for males. The Mean Absolute Percent Error (MAPE) statistic was used, which is a widely used method to measure the accuracy of the predictions made. It was determined that ANNs MAPE (%) values were better than MAPE values calculated for the length–weight relationship and von Bertalanffy growth function models for A. sellal. This study shows that ANNs can be used as an alternative useful method for predicting population parameters. ANN models are therefore an effective tool to describe fish growth parameters. They have been found to be a useful predictive tool. The developed models can be used to predict future sustainable fish management.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.