Treatment of the soil by plants (phytoremediation), associated with the production of biomass for energy purposes, carries a number of significant problems with a practical and technical point of view. They concern mainly the way of the thermal conversion of biomass to energy production in an efficient and environmentally safe way. One way may be gasification. This process involves the conversion of organic matter into a combustible gas mixture by partial oxidation at high temperature under the influence of the gasifying agent (air, oxygen, steam, or mixtures of these components). Gasification aim is to obtain a combustible gas. Unfortunately, the formation of gas also accompanied by the formation of solid and liquid waste products. The paper presents the results of basic physico-chemical properties of solid (ash) and liquid (tar) waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Two types of energy crops: Miscanthus x giganteus and Sida hermaphrodita were used. The experimental plots were established on postindustrial site - former sewage sludge dewatering area (Leipzig site, Germany). The results show that the gasification process, promotes the migration of harmful substances such as heavy metals from the fuel to the solid phase.
PL
Oczyszczanie gleb za pomocą roślin (tzw. fitoremediacja), skojarzone z produkcją biomasy na cele energetyczne, niesie za sobą szereg problemów istotnych z praktycznego i technicznego punktu widzenia. Dotyczą one przede wszystkim sposobu konwersji termicznej wyprodukowanej biomasy na energię w sposób efektywny i bezpieczny dla środowiska. Jednym ze sposobów może być zgazowanie. Proces ten polega na przekształcaniu substancji organicznej w palną mieszaninę gazów przez częściowe utlenienie w wysokiej temperaturze pod wpływem czynnika zgazowującego (powietrza, tlenu, pary wodnej lub mieszanin tych składników). Zgazowanie ma na celu uzyskanie palnego gazu. Niestety powstawaniu gazu towarzyszy również powstawanie stałych i ciekłych produktów odpadowych. W pracy przedstawiono rezultaty badań podstawowych właściwości fizyczno-chemicznych stałych (popiół) i ciekłych (smoły) produktów odpadowych pochodzących z procesu zgazowania roślin energetycznych uprawianych na terenie zdegradowanym ekologicznie. Proces zgazowania prowadzono w laboratoryjnym reaktorze ze złożem stałym. Wykorzystano dwa rodzaje roślin energetycznych: miskanta olbrzymiego oraz ślazowca pensylwańskiego. Rośliny pozyskano z nieużytku poprzemysłowego z okolic Lipska (Niemcy), na którym składowano komunalne osady ściekowe. Wyniki pokazują, że zgazowanie jako proces przekształcania substancji organicznej w gaz przy jednoczesnej produkcji stałych i ciekłych produktów odpadowych promuje migrację szkodliwych związków, takich jak metale ciężkie, występujących w paliwie, do fazy stałej i ciekłej.
Peculiarities of metals uptake by the biofuel crop Miscanthus x giganteus were explored during plant growth at soil from the military site (Sliač, Slovakia). The experiment was carried out in greenhouse during two vegetation seasons. Research soil was predominantly elevated in Fe and Ti, while other metals (As, Cu, Mn, Sr, Zn and Zr) were presented at order of magnitude lower concentrations. No inhibition of plant growth was observed. The calculated Bioconcentration Factor showed that levels of metals’ accumulation by plant roots, stems and leaves were independent of metals’ concentrations in the soil. The accumulation of metals by stems and leaves was much lower than by roots. As, Zr, Ti were almost not accumulated by stems and leaves during both seasons; accumulation of Cu, Fe, Mn, Zn and Sr was not essential which confi rmed that biomass of M. x giganteus might be processed for the energy purpose.
Wykorzystanie paliw biomasowych jest jedną z technologii, która poddawana jest intensywnemu rozpoznaniu możliwości aplikacyjnych i wdrożeniowych. Jednym z czynników decydujących o możliwości prowadzenia upraw energetycznych jest brak konkurencji z uprawami na cele konsumpcyjne. Postuluje się, że produkcję biomasy na cele energetyczne można powiązać z wykorzystaniem nieużytków poprzemysłowych, terenów zdegradowanych i zanieczyszczonych metalami ciężkimi (chrom, ołów, cynk, kadm) poprzez wykorzystanie roślin energetycznych o zdolnościach fitoremediacyjnych. Dobrze rokującą metodą utylizacji pozyskanego paliwa jest proces zgazowania ze względu na możliwą akumulację związków toksycznych w produktach stałych, co umożliwia dalszą, bezpieczną utylizację przy zachowaniu zdolności produkcyjnych paliwa gazowego. Wykonano badania eksperymentalne procesu zgazowania miskanta olbrzymiego, który ma potencjał rekultywacji terenów zdegradowanych, aby określić możliwości zastosowania agroenergetyki do czynnego oczyszczania środowiska. Wykorzystano reaktor dolnociągowy ze złożem stałym o maksymalnym wsadzie 5 kg. W celu zwiększenia potencjału akumulacji zanieczyszczeń wykorzystano dodatek w postaci haloizytu. Rezultaty badań eksperymentalnych wskazują na znaczące zwiększenie udziału ołowiu w popiele.
EN
The use of biomass fuels is continually investigated, and the industry application possibilities are widely recognized. One of the determinants of energy crops cultivation is lack of competition with crops for consumption purposes. The production of biomass for energy purposes can be linked with the use of wastelands, degraded and heavy metals (chrome, lead, zinc, cadmium) contaminated areas through the use of energy crops with a phytoremediation potential. Gasification seems to be a good method of energy crops utilization due to the potential of retention in solid products of some heavy metals. This process also allows for the production of valuable gaseous fuel. Experimental research on the Miscanthus x giganteus gasification was carried out to determine the potential for agroenergetics to be used for active environmental protection. Fixed bed reactor was used. The maximum weight of the feedstock in the gasifier is 5 kg. To increase the potential of heavy metal accumulation in slag, the halloysite additive was used. The results of experimental studies present a significant increase of the lead share in slag.
Spectroscopic methods are one of the most popular tools for identifying and analysing the organic compound structure. They are characterized by high speed of measurement and a small amount of material necessary for testing. Attenuated Total Reflectance (ATR) is a relatively new technique for infrared spectroscopy. In contrast to classical transmission measurement, the ATR technique is a reflexive method. Its advantage is the lack of sample preparation and the possibility of testing various materials containing organic carbon such as biomass. In the paper, the FTIR (Fourier-transform infrared spectroscopy) analyses of two energy crop feedstock were carried out: (1) grass Miscanthus x giganteus, MG - representative of the monocotyledonous plant, and (2) perennial plant Sida hermaphrodita, SH - representative of the diocotyledonous plant. Spectra were recorded using the Spectrum GX spectrometer with the ATR supplement from a Perkin Elmer company with the 32 scans and a 4 cm–1 resolution. Analysis of the spectra of both biomass samples indicates the presence of the groups -OH (3415 cm–1 for MG and 3412 cm–1 for SH). In addition, C = O (1733 cm–1 for MG and 1735 cm–1 for SH) are also present in ketones and quinones, C-C-O, C-H from aromatic rings and CH2 from saturated compounds. In addition, the spectra of both biomass samples were compared with library spectral masses of the coarse cardboard and cellulose with lignin. The similarity coefficient for MG is 87% for coarse cardboard and 85% for lignin and cellulose, and for SH - 86% for coarse cardboard and 81% for lignin and cellulose.
PL
Metody spektroskopowe są jednym z najpopularniejszych narzędzi do identyfikacji oraz badania budowy związków organicznych. Cechują się dużą szybkością wykonania pomiaru oraz niewielką ilością materiału niezbędnego do badania. Stosunkowo nową techniką spektroskopii w podczerwieni jest spektroskopia osłabionego całkowitego odbicia (ang. Attenuated Total Reflectance - ATR). W przeciwieństwie do klasycznego pomiaru metodą transmisyjną technika ATR należy do metod refleksyjnych. Jej zaletą jest brak konieczności przygotowania próbki oraz możliwość badania różnych materiałów zawierających węgiel organiczny, jak np. biomasa. W pracy wykonano analizy FTIR dwóch gatunków roślin energetycznych: (1) trawy z gatunku Miskant olbrzymi (łac. Miscanthus x giganteus, MG), przedstawiciela klasy jednoliściennych, oraz (2) byliny z gatunku Ślazowiec pensylwański (łac. Sida hermaphrodita, SH), przedstawiciela klasy dwuliściennych. Widma zarejestrowane zostały za pomocą spektrometru Spectrum GX z dostawką ATR firmy Perkin Elmer. Widma były rejestrowane w 32 powtórzeniach z rozdzielczością 4 cm–1. Analiza widm obu próbek biomasy wskazuje na obecność grup -OH (3415 cm–1 dla MG oraz 3412 cm–1 dla SH). Ponadto obecne są grupy C=O (1733 cm–1 dla MG oraz 1735 cm–1 dla SH), prawdopodobnie w ketonach i chinonach, C-C-O, C-H z pierścieni aromatycznych oraz CH2 ze związków nasyconych. Dodatkowo widma obu próbek biomasy zestawiono z widmami mas biblioteki wzorców kartonu oraz celulozy z ligniną. Współczynnik podobieństwa w przypadku MG wynosi 87% dla kartonu i 85% dla ligniny i celulozy, a w przypadku SH - 86% dla kartonu i 81% dla ligniny i celulozy.
The purpose of the presented work was to evaluate the changes in the sulfur content in the aboveground parts of Miscanthus x giganteus under the influence of applying incrementally increasing doses of nitrogen and potassium. Field experiments were conducted using the split-plot method on light, sandy soil. Varying doses of nitrogen-based fertilizers were used: 100 kg N; 150 kg N and 200 kg N ha–1, with potassium 83 kg K and 124 kg K (100 kg and 150 kg K2O). Plant samples were taken from 2007 to 2009 during the months of June through October. Throughout the vegetation period the sulfur content in the studied Miscanthus was twice as high in the leaves as in the stems. The highest amount of sulfur was found in young plants. By the end of the vegetation period the sulfur content in the leaves fell by about 30 % and in the stems by 60 %. None of the studies found that fertilizing with nitrogen significantly modified the sulfur content in Miscanthus. However, it was determined that the sulfur content was significantly higher in the stems and leaves of the Miscanthus fertilized with higher doses of potassium. Throughout the three-year study period increasingly higher amounts of sulfur were observed in the aboveground parts of Miscanthus at all the field trial locations.
PL
Celem prezentowanej pracy była ocena zmian zawartości siarki w częściach nadziemnych miskanta olbrzymiego pod wpływem stosowania wzrastających dawek azotu oraz potasu. Ścisłe doświadczenie polowe założono metodą split-plot, na glebie piaszczystej lekkiej. Zróżnicowane dawki nawozów azotowych wynosiły: 100 kg N; 150 kg N oraz 200 kg N ha-1, natomiast potasu 83 kg K i 124 kg K (100 kg i 150 kg K2O). Próbki roślinne pobierano w latach 2007-2009, w okresie od czerwca do października. Podczas całego okresu wegetacji miskanta stwierdzano prawie o połowę mniejsze zawartości siarki w łodygach niż w liściach. Najwięcej tego składnika zawierały rośliny młode. W miarę upływu okresu wegetacji zawartość siarki zmniejszała się w liściach o około 30 %, natomiast w łodygach o 60 %. W żadnym z lat badań nawożenie azotem nie modyfikowało istotnie zawartości S w miskancie. Stwierdzono natomiast istotny wzrost zawartości siarki w liściach i łodygach miskanta nawożonego większą dawką potasu. W kolejnych latach badań na wszystkich obiektach obserwowano w nadziemnych częściach miskanta coraz wyższą zawartość siarki.
Rolnictwo XXI wieku staje przed nowym wyzwaniem, jakim jest wyprodukowanie i dostarczenie określonej ilości biomasy o odpowiednich parametrach energetycznych. Będzie to możliwe poprzez celową uprawę wieloletnich roślin lignino-celulozowych, tj. miskant olbrzymi, bądź poprzez przeznaczenie pewnej ilości plonów dotychczas uprawianych jak na przykład kukurydza. Po odpowiednim przetworzeniu biomasy tych roślin możemy otrzymywać poszczególne rodzaje biopaliw: stałe, ciekłe i gazowe. Aktualnie biomasa miskanta olbrzymiego, przetwarzana jest na brykiety, natomiast w przyszłości znajdzie zastosowanie w produkcji biopaliw ciekłych II generacji. Największa przyszłość kukurydzy jako rośliny energetycznej w Polsce związana jest z produkcja biogazu.
EN
Agriculture of XXI century meets a quite new challenge, a production and supplying of adequate amount of bio-mass showing specific energy parameters. It will be possible due to the aimed cultivation of multiannual lignin-cellulotic crops, i.e. Miscanthus x Giganteus or to providing some amount of yield of actually cultivated ones, as e.g. maize. Following an appropriate biomass processing of these crops we can get specific kind of biofuels: solid, liquid And gaseous. Nowadays, the biomass of Miscanthus x Giganteus undergoes processing into briquettes, while in the future it will be used to produce liquid biofuels of II generation. The most promising perspective for maize as an energy crop in Poland relates to biogas production.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.