Modeling of the manufacturing process of thin wires made of MgCa08 alloy is described in the paper. This process is composed of 25 drawing passes in heated dies for initial wire diameter of 1.0 mm and final diameter of 0.1 mm. Parameters of drawing process were chosen in such a way that complete recrystallization of the wireoccurred in all passes. The model of static recrystallization (SRX) for MgCa08 alloy was developed to enable design of the drawing process. The parameters of the model were determined on the basis of stress relaxation tests. The tests were performed on GLEEBLE 3800 physical simulator for three temperatures 250, 300, 350ºC and three strains 0.1, 0.2 and 0.3. SRX model was implemented into Drawing2D software, which allows simulation of drawing processes in heated dies. Two variants of drawing process were simulated. In the first variant all passes were performed with the die temperature of 350ºC. In the second variant one pass were carried out with the die temperature of 21ºC. The verification of simulations was done on the basis of microstructures observed in experiments and it was showed in the paper that the model predicts correctly final microstructure. Performed experiments and numerical simulations showed that contribution of the dynamic recrystallization is small and it may be neglected in simulation of multi-pass hot drawing of MgCa08 alloy. The results of simulations of the SRX showed that in this process only every second pass has to be realized in a hot die. After each cold pass the hot pass is required in order to restore the plasticity by recrystallization.
PL
Praca poświęcona jest modelowaniu numerycznemu procesu ciągnienia cienkich drutów ze stopu magnezu MgCa08. Opisywany proces składa się z 25 przepustów wykonanych w gorących ciągadłach przy początkowej średnicy drutu 1 mm oraz końcowej .1 mm. Parametry procesu ciągnienia dobrano w taki sposób, by w czasie ciągnienia zachodziła pełna rekrystalizacja. Dlatego konieczne było opracowanie modelu rekrystalizacji statycznej (SRX). Parametry modelu SRX określono na podstawie badań taksacji, które zostały wykonane na symulatorze GLEEBLE 800 dla trzech różnych temperatur 250, 300, 350 °C i trzech wartości odkształcenia 0.1, 0.2 oraz 0.3. Model rekrystalizacji statycznej został zaimplementowany do oprogramowania Drawing2D, które umożliwia symulację procesu ciągnienia w podgrzewanych ciągadłach. Wykonano dwa warianty symulacji procesu ciągnienia. W pierwszym wszystkie przepusty w procesie ciągnienia zostały wykonane w temperaturze 50 °C, w drugim zaś jeden z przepustów wykonano w temperaturze pokojowej. Weryfikacja modelu rekrystalizacji została wykonana w oparciu o zdjęcia mikrostruktur drutów po procesie ciągnienia. Przeprowadzone badania doświadczalne i symulacje numeryczne wykazały, że udział rekrystalizacji dynamicznej w badanym procesie jest niewielki i może ona zostać pominięta w modelu. Wyniki symulacji rekrystalizacji statycznej pokazały, że w procesie wielostopniowego ciągnienia drutów ze stopu MgCa08 wystarczy, jeżeli co drugi przepust jest wykonywany w podgrzewanym ciągadle. Po każdym przepuście w temperaturze otoczenia wymagany jest przepust w podgrzewanym ciągadle.
The paper deals with a modeling of manufacturing process of thin wire of MgCa08 alloy used as biocompatible soluble threads for medical application. Some difficulties in material deformation subjected with its hexagonal structure can be solved with accurate establishment of the deformation conditions, especially temperature history of the whole process. In drawing process with heated die, wire is preheated in furnace and then deformed. The only narrow temperature range allows for multi-pass drawing without wire breaking. Diameter below 0.1 mm required for the final product makes very important the consideration of microstructure evolution because grain size is comparable with the wire dimensions. For this reason the problem is considered in the micro scale by using the frontal cellular automata (FCA)-based model. The goals of present work are the development and validation of FCA-base model of microstructure evolution of MgCa0.8 magnesium alloy. To reach this objective, plastometric and relaxation tests of MgCA08 alloy were done on physical simulator GLEEBLE 3800. Results of the experimental studies were used for parameters identification of the hardening-softening model of the material. Then, initial microstructure and its evolution during the drawing passes were simulated with FCA-based model. FCA consider dislocation density and flow stress, hardening and softening including recovery and recrystallization, grain refinement and grain rotation, as well as grain growth. It allows one to obtain structures close to real ones. Two variants of the drawing process with different temperature history were considered. The deformation scheme was the same. Simulation results with following short discussion confirm usefulness of FCA-based model for explanation and selection of rational technological condition of thin wire drawing of MgCa08 alloy.
PL
W pracy rozpatrzono proces wytwarzania cienkich drutów z biozgodnego stopu MgCa0.8 z przeznaczeniem na resorbowalne nici chirurgiczne. W procesie ciągnienia drut nagrzewany jest w piecu a następnie odkształcany. Jednym z warunków, jaki musi być spełniony w technologicznym procesie jest zachodzenie rekrystalizacji w trakcie ciągnienia. Pozwala to na realizację wielo przepustowego procesu ciągnienia bez wyżarzania międzyoperacyjnego. Prognozowanie rekrystalizacji na etapie projektowania technologii wymaga stworzenia modelu rekrystalizacji. W przypadku ciągnienia drutów o średnicach mniejszych niż 0.1 mm konieczne jest zastosowania modelu w skali mikro. Celem pracy jest opracowanie modelu rekrystalizacji, opartego o frontalne automaty komórkowe (FCA) oraz przykładowa symulacja kilku przepustów ciągnienia. Do kalibracji modelu FCA wykorzystano badania plastometryczne oraz testy relaksacji stopu MgCa08 przy użyciu symulatora fizycznego GLEEBLE 3800. Wyniki tych badań pozwoliły wyznaczyć parametry modelu umocnienia-mięknięcia materiału. Następnie początkowa mikrostruktura i jej rozwój podczas procesu ciągnienia były analizowane za pomocą modelu opartego o FCA, który uwzględnia gęstość dyslokacji, naprężenie uplastyczniające, umocnienie i mięknięcie w tym zdrowienie i rekrystalizację, rozdrobnienie ziaren oraz ich rotację i rozrost, co pozwala na uzyskanie struktury bliskiej do rzeczywistej. Dwa warianty procesu ciągnienia o różnej historii zmiany temperatury rozpatrzono w pracy. Wyniki symulacji potwierdziły przydatność modelu opartego o FCA do uzasadnienia i wyboru racjonalnych warunków technologicznych ciągnienia cienkich drutów za stopu MgCa08. W pracy przedstawiono również praktyczną implementację procesu ciągnienia.
Opracowano model MES (Metoda Elementów Skończonych) procesu wyciskania na trzpieniu rur i profili ze specjalnych stopów magnezu z przeznaczeniem na resorbowalne implanty do usztywniania kości po złamaniu lub resorbowalne stenty. Rozpatrywane stopy Mg mają niską technologiczną plastyczność podczas wyciskania. Opracowany model jest przeznaczony do optymalizacji parametrów wyciskania, stosując stopień wykorzystania zapasu plastyczności wyciskanego stopu jako funkcję celu oraz wartość maksymalnej temperatury w kotlinie odkształcenia jako ograniczenie. Ponieważ obliczenia optymalizacyjne wymagają dużej liczby symulacji MES, zaproponowano rozwiązanie, wykorzystujące możliwości obliczeń równoległych. Opracowany program generuje wektor wariantów symulacji i uruchamia je równolegle na kastrze komputerowym w infrastrukturze PLGrid. W niniejszej pracy pokazano praktyczny przykład optymalizacji oraz procedurę otrzymania niezbędnych do symulacji danych materiałowych na przykładzie stopu MgCa08.
EN
This paper is devoted to the development of the FEM (Finite Element Method) model of the extrusion process of tubes on mandrel and profiles from Mg alloy for the purpose of resorbable implants to stiffen the bones after fracture or resorbable stents. Mg alloys are characterized by low technological plasticity during extrusion. Presented model was designed to optimize the parameters of extrusion tubes on mandrel and profiles using ductility of material as objective function and maximum value of temperature in the deformation zone as a limitation. Since the optimization requires a large number of FEM simulations, solution based on parallel computing capabilities was used. The developed software generates vector of simulation variants and runs them on the computer cluster in parallel mode on PLGrid infrastructure. In this work example of optimization process and the material model identification procedure for the MgCa08 alloy was shown.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.