Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  MgCa0.8
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the present paper the drawing processes of thin wire of biocompatible magnesium alloys in heated die was investigated. Due to the hexagonal close packet structure magnesium alloys have low plasticity. In order to design the technological parameters the FEM model of wire drawing process in heated die and models of yield stress and ductility were developed. The relationship between technological parameters of drawing and fracture parameters was obtained based on developed models. The maps of possible elongation for MgCa0.8 and Ax30 magnesium alloys were developed using simulations. The draft schedule for final wire diameter 0.1 mm was design assisted with FEM model in experimental part of work. Based on this draft plan the drawing process from initial diameter 1.0 mm to final diameter 0.1 mm in heated die was performed in designed by author’s device.
PL
Specjalne stopy magnezu (MgCa08, Ax30), wykazujące wysoki poziom biokompatybilności ze środowiskiem organizmu człowieka, stały sie alternatywnym materiałem do zastosowania na implanty medyczne. Jednym z ich zastosowań mogą być nici chirurgiczne, służące do spajania tkanki miękkiej. Nici takie powinny mieć średnice rzędu 0.1 mm. W związku z niską technologiczną plastycznością tych stopów zaproponowano, aby proces ciągnienia prowadzić w podgrzewanych ciągadłach. W pracy analizowano proces ciągnienia w podgrzewanych ciągadłach cienkich drutów z biokompatybilnych stopów magnezu. W celu wyznaczenia technologicznych parametrów procesu ciągnienia użyto modelu MES, który rozbudowano o rozwiązanie cieplne w ciągadle, funkcje naprężenia uplastyczniającego oraz model utraty spójności analizowanych stopów. W oparciu o opracowany model wyznaczono zależności pomiędzy technologicznymi parametrami procesu ciągnienia i kryterium utraty spójności. W oparciu o symulacje numeryczne zbudowano mapy dopuszczalnych odkształceń dla stopów magnezu MgCa0.8 oraz Ax30.Wczesci eksperymentalnej pracy w oparciu o symulacje numeryczne wyznaczono schemat odkształceń do uzyskania drutu o średnicy 0.1 mm. W oparciu o wyznaczony schemat przeprowadzono proces ciągnienia w podgrzewanych ciągadłach ze średnicy początkowej 1.0 mm do średnicy końcowej 0.1 mm w urządzeniu skonstruowanym przez autorów.
PL
W pracy rozpatrzono proces ciągnienia w podgrzewanych ciągadłach drutów o średnicach 0,1÷0,9 mm ze stopów MgCa0,8 oraz A×30, przeznaczonych na resorbowalne nici chirurgiczne do spajania tkanki miękkiej. W związku z niską technologiczną plastycznością takich stopów podczas ciągnienia na zimno, zaproponowano proces, w którym drut w procesie ciągnienia jest podgrzewany przez ciągadło do temperatury około 300 °C. W tym celu opracowano urządzenie, pozwalające na kontrolowane nagrzewanie ciągadła i przeprowadzenie procesu ciągnienia. Problemem jest dobór parametrów procesu ciągnienia (odkształceń, prędkości ciągnienia, temperatury narzędzia, kształtu narzędzia), pozwalających na otrzymanie drutu bez wyżarzania między przepustami oraz uniknięcie utraty spójności drutu. Do rozwiązania problemu wykorzystano program MES Drawing2d, do którego zaimplementowano modele utraty spójności rozpatrywanych stopów Mg. W trakcie symulacji zaobserwowano trzy mechanizmy utraty spójności: wyczerpanie zapasu plastyczności w kotlinie odkształcenia, klasyczne zerwanie drutu oraz zerwanie związane z wysokim gradientem temperatury wzdłuż drutu po jego wyjściu z kotliny odkształcenia. Na podstawie symulacji MES wyznaczono technologiczne parametry procesu ciągnienia w podgrzewanych ciągadłach. Wyniki symulacji zostały zweryfikowane eksperymentalnie. Efektem pracy są wykonane druty ze stopów MgCa0,8 oraz A × 30 o średnicach 0,1÷0,9 mm.
EN
In the present paper drawing process in heated die of thin magnesium wire with diameter 0,1÷0,9 mm for surgical application was examined. Magnesium alloys have low plasticity during cold deformation that is why new drawing process in heated die was proposed. In this technology drawn wire is locally heated by die to temperature about 300 °C. Main idea of this drawing process in heated die is to carry out drawing process in such condition in which recrystallization occurs and drawn wire does not break. That is why there are some problems in this technology in defining proper drawing parameters as deformation, drawing velocity, tool temperature and the shape of tool. To solve this problem Drawing2d FEM program was used. This FEM code was expand with ductility function of considered magnesium alloys. The simulation shows three possible mechanisms of fracture − the exhaustion of plasticity in deformation zone, the classical breaking of wire and break associated with high temperature gradient along the wire after it exits from deformation zone. Based on the FEM simulations, the technological parameters of drawing process in heated die were determined. The simulation results were verified experimentally. The result of the work are thin wires with magnesium alloys (MgCa0.8 and A×30) with diameters 0.1÷0.9 mm.
EN
The problem of determination of the cold low diameter wire (diameter less than 0.1mm) drawing process parameters for hardly deformable biocompatible magnesium alloys by using the mathematical mesoscale model is described in the paper. The originality of the considered alloys (MgCa0.8, Ax30) is the intergranular fracture mechanism associated with small strains (0.07-0.09). In previous authors works it was proven that the material state directly before appearance of the microcracks is in the optimal state from the point of view of the recovery of the plasticity by annealing. The forecasting of this material state in drawing process requires the development of the model of intergranular fracture initiation and using this model in two cases: - modeling of the in-situ tests, what allows calibrating and validating of the model; - modeling of the drawing process, what allows optimizing of the drawing parameters. A new model of the microcracks initiation in mesoscale using the boundary element method is proposed. The in-situ tests, which allowed observing the microstructure evolution during deformation, are used for the calibration and validation purpose. The model was implemented into self-developed FE software Drawing2d, which is dedicated to the drawing process. The results of mesoscale simulation were verified by the experimental drawing process of 0.07 mm diameter wires according to developed technology. It was shown by analysis of microstructure that the model allows forecasting the microcracks initiation during the wire drawing process.
PL
W artykule rozpatrzono problem wyznaczenia parametrów ciągnienia na zimno cienkich drutów (o średnicach mniejszych 0.1 mm) z nisko plastycznych stopów magnezu za pomocą matematycznego modelu w skali mezo. Osobliwością utraty spójności rozpatrywanych stopów (MgCa0.8, Ax30) jest dominujący mechanizm pękania po granicach ziaren oraz powstawanie mikropęknięć przy małych odkształceniach (rzędu 0.07-0.09). W poprzednich pracach Autorów [1] udowodniono, ze stan materiału bezpośrednio przed powstaniem mikropęknięć jest optymalny z punktu widzenia odnawiania plastyczności w procesie wyżarzania. Prognozowanie takiego stanu materiału w procesie ciągnienia wymaga opracowania modelu powstawania mikropęknięć po granicach ziaren i wykorzystania tego modelu w dwóch trybach: - modelowanie testów in-situ, co pozwala na kalibracje i walidacje modelu; - modelowanie procesu ciągnienia, co pozwala na optymalizacje jego parametrów. Zaproponowano nowy model powstawania mikropęknięć w skali mezo, oparty o metodę elementów brzegowych. Do kalibracji i walidacji modelu wykorzystano badan in-situ, pozwalające na bezpośrednia obserwacje mikrostruktury podczas odkształcenia. Opracowany model zaimplementowano do Autorskiego programu MES Drawing2d dedykowanemu procesowi ciągnienia. Wyniki symulacji w skali mezo zweryfikowano na podstawie eksperymentalnego ciągnienia drutów o małych średnicach (do 0.07 mm) zgodnego z opracowana technologia. Na podstawie analizy mikrostruktury wykazano, ze opracowany model pozwala przewidywać powstawanie mikropęknięć w procesie ciągnienia.
PL
Stopy magnezu o podwyższonej biozgodności posiadają niską plastyczność w temperaturze pokojowej. Opracowanie modelu utraty spójności jest niezbędne do projektowania technologicznych parametrów procesu ciągnienia tych stopów. W artykule zaproponowano model numeryczny procesu utraty spójności dla przykładowego stopu MgCa0,8 z uwzględnieniem mechanizmu mikropękania na poziomie mikrostruktury. Pierwsza część pracy jest poświęcona doświadczalnej analizie procesu rozciągania próbek w specjalnej mikrokomorze 10 000N Tensile/Compresion stage for SEM, która pozwala na obserwację odkształcanej mikrostruktury za pomocą mikroskopu skaningowego. Analiza wyników eksperymentu wykazała, że mikropękanie zarodkuje na granicach ziaren a następnie propaguje wzdłuż granicy, prowadząc do globalnego zerwania materiału. Uzyskano graniczne wartości odkształceń, niepowodujących powstawania mikropęknięć. Do interpretacji testów na poziomie makro wykorzystano symulacje procesu rozciągania za pomocą metody elementów skończonych. Do wyznaczenia mechanicznych charakterystyk badanego stopu na poziomie makro wykonano testy na rozciąganie w maszynie Zwick250. W dalszej części artykułu opisano model utraty spójności stopu MgCa0,8 w skali mikro. Zaproponowano podejście do symulacji zjawiska mikropękania po granicach ziaren, oparte na metodzie wprowadzenia cienkiej warstwy elementów modelujących granice. Dla materiału granicy zaproponowano model umocnienia oraz kryterium mikropękania. Weryfikacja modelu w skali mikro była oparta na porównaniu mikrostruktur z wynikami modelowania na różnych stadiach rozciągania próbki.
EN
The MgCa0,8 magnesium alloys can be applied to production of surgical threads. Low plasticity of this alloys cause difficulties with cold forming. Composition of alloys which are used in medicine is selected, so that surgical threads made from this alloys will have high bio-compatibility and adequate solubility in human body. The purpose of this work is development a mathematical model of MgCa0,8 fracture phenomena in micro scale. According to reached results, the analysis of fracture phenomena in macro scale is not sufficient and, therefore the model in micro scale is necessary. Model of wire drawing can be used to optimize the parameters of drawing process and to predict the ductility of material. The first part of the work is focused on experimental studies of tensile tests, which is used to work out micro scale fracture model. The experiment which was done at the University of Hannover show that fracture in MgCa0,8 alloy had started in grains boundaries and, in consequence had been propagated along grains boundaries. During the tensile test the photos of microstructure had been taken and then, this data were applied for modelling in micro scale. For simulation of test in macroscale, the FEM is used. For identification a yield stress curve for the macro scale model the experiments in Zwick250 were used. The second part of work was focused on development a multiscale numerical model of fracture phenomena. In micro scale model the finite element method was used. The Abaqus 6.7 was used in calculations. For modelling of boundaries of grains the Thin Layer Method was used. The properties of material in grain boundaries were determinate in the inverse analysis. The aim of this analysis was to obtain results of numerical calculations comparable with the experimental data. The boundary conditions and shape of model in micro scale were obtained from process simulation in macroscale. The fracture modelling of the material is made on the basis of the Johnson-Cook fracture initiation criterion and it is an integral component of the Abaqus software. The inverse analysis was used to obtain parameters of this criterion. The final results of numerical model of tensile test in micro-scale were performed and the prediction of fracture phenomena in grains boundaries is observed. The model described in this paper always predict ductility quite well, but sometimes the different with experiments are observed. It is mainly implicated by the fact that many simplifications were made in this approach. Using the FEM to modeling the microstructure makes impossible introduction the big number of grains, because it generates the big number of nodes. The originality of this paper is a new approach to fracture modelling in micro scale, based on physical and numerical methods of modelling.
PL
W niniejszej pracy opracowano modele naprężenia uplastyczniającego oraz odkształcalności granicznej dla stopów magnezu o podwyższonej biozgodności MgCa0,8 oraz ZEK100. Badania materiałowe wykonano na maszynie ZwickZ250. Do analizy wyników testów rozciągania oraz spęczania wykorzystano analizę odwrotną. Za pomocą metody elementów skończonych zbudowano modele wykonanych testów spęczania oraz rozciągania, które pozwoliły na określenie warunków utraty spójności materiału. Opracowane modele mechaniczne zaimplementowano do programu Drawing2d w celu przeprowadzenia symulacji procesu ciągnienia. Otrzymany model procesu ciągnienia drutów z rozpatrywanych materiałów pozwolił na określenie granicznego odkształcenia oraz planu gniotów dla wsadu średnicy 0,5 mm oraz średnicy końcowej drutu średnicy 0,1 mm.
EN
In the present paper the flow stress and ductility models for MgCa0.8 and ZEK100 magnesium alloys were developed. Materials tests were performed on the strength machine ZwickZ250. Interpretation of tensile and upset tests results was done using the inverse algorithm. The finite element method models of tensile and upset tests were prepared to determine of fracture conditions. Mechanical models were implemented into Drawing2d software. Fracture criterion was helpful to evaluate the material critical deformation during drawing process and drawing schedule of MgCa0.8 magnesium alloy from initial diameter 0.5 mm to final diameter 0.1 mm.
EN
Magnesium alloys with increased bio-compatibility are applied in medicine for the sake of high compatibility and solubility in human body. Production of surgical threads to integration of tissue can be example of the application of these types of alloys. The MgCa0.8 magnesium alloy has a low plasticity at cold deformation, therefore, the drawing process of thin wire is difficult. Prediction of wire fracture in a drawing process of MgCa0.8 alloy is very important from theoretical and practical point of view. The macro scale fracture models are not capable to predict the important phenomena, such as cracking in grains boundaries, moment of initiation of micro-cracks, stress relaxation in grain after micro-cracking etc. Present work is dedicated to the development of a numerical model of MgCa0.8 fracture phenomena prediction in micro scale. The first part of the work is focused on experimental studies: tensile tests, which are data source for the flow stress model of MgCa0.8 alloy and metallographic analysis of material for micro scale fracture model. To understand fracture mechanism, physical modeling in 10000 N tensile/compression stage for a SEM for MgCa0.8 magnesium alloy was performed. This analysis shows that the material is cracking at the grain boundaries. Experiments in the chamber of SEM allows understanding of the fracture mechanism in special magnesium alloy MgCa0.8 and determining the empiric coefficients of fracture model in micro scale. The limit of deformation before initiations of micro-cracks was obtained. The second part of the work is focused on the development of the micro scale numerical model of fracture. The boundary element method is proposed for micro scale model. The mathematical model of fracture is developed for the two dimensional domain. The elastic-plastic theory of plasticity is used.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.