Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Methylene blue
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A novel efficient adsorbent, alkali-pretreated Paeonia ostii seed coats (AP-PSC), was investigated for the removal of methylene blue (MB) dye from solution. Orthogonal array design was applied to optimize the process parameters viz. alkali concentration, liquid-solid ratio (LSR) and pretreatment time. The results revealed that the optimal pretreatment conditions were at 0.8% (w/w) NaOH with LSR of 0.35 L g–1  treating for 50 min. Equilibrium and kinetic studies indicated that Langmuir isotherm and Pseudo-second-order models described the experimental data well. The maximum adsorption capability was of 368.2 mg g–1  for MB at 25°C. Thermodynamic parameters suggested that the AP-PSC adsorption process was physical, endothermic and spontaneous. Furthermore, the adsorption process was influenced by several interactive mechanisms, including ion-exchange, as well as Van der Waals forces and hydrogen bonds that occur concomitantly. It was concluded that AP-PSC may be potential as an efficient adsorbent to remove MB from solution.
EN
This study illustrates the preparation of activated carbon (AC) from Corn Cob (CC) via microwave assisted K2CO3&enspactivation. The effect of operational parameters including chemical impregnation ratio (0.25-1.25), microwave power (90 – 800 W) and irradiation time (1 – 9 min) on the carbon yield and adsorption capability of derived Corn Cob Activated Carbon (CCAC) were investigated. The results indicated that the optimum conditions were as follows: microwave power of 600W, microwave radiation time of 5 min and the impregnation ratio of K2CO3&enspwas 0.75 g/g. The optimum conditions resulted in CCAC with a maximum adsorption capacity of 275.32 mg/g for MB and carbon yield of 27.09%. The BET surface area, Langmuir surface area and total pore volume were determined to be 765 m2/g, 834 m2/g and 0.43 cm3/g, respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.