Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  MePc:PTCDA
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Study of thin films for application in photovoltaic cells
EN
Purpose: of this paper: The major aim of this paper was describing technical conditions of thermal evaporation method of organic thin film used as active layers for photovoltaic cells. Design/methodology/approach: The organic thin films have been obtained by thermal evaporation process from two sources. The two sources technique alleged to using the mixtures of two kinds of materials on deposited substrate and created the bulk p-n junction. By steering the source temperature the deposited rate of substrates has been changed which has led to changes in the share component in the layer. Findings: The obtained results describe the influence of evaporation process from two sources on optical properties and surface morphology of thin films which consist molecular materials - perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) and metal phthalocyanines (NiPc, TiOPc) blends. Research limitations/implications: The morphology and optical properties of thin films films made of organic materials MePc:PTCDA were described. This paper include also influence of physical vapor deposition process conditions on properties of thin films. Practical implications: The obtained results allowed to create the bulk p-n junction. The MePc:PTCDA thin films can be used in photovoltaic applications. Originality/value: The value of this paper is defining the optimal parameters of thermal evaporation from two sources for preparing MePc:PTCDA thin film with the best properties for photovoltaic applications. This paper describes the use of molecular materials for PVD technology. Results of these researches allowed to develop the technology of bulk heterojunction of molecular materials.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.