Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  MOS-HEMT
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We have developed a unified analytical model for computation of 2D electron gas sheet charge density in AlInN/GaN metal-oxide-semiconductor high electron mobility transistor device structure. This model has been developed by incorporating the variation in lowest three energy sub-bands and Fermi level energy in the quantum-well with respect to gate voltage. We noticed that the dependency of lowest sub-band energy with Fermi energy having two fields, which are the lowest sub-band energy is greater and lesser than the Fermi level energy. According to these two fields, we have developed the fermi energy and sheet charge density expressions in each field. By combining each field of the models, developed a unified 2D electron gas sheet charge density model. The Fermi level and sheet charge density are interdependent in the model development. The developed model results are compared with TCAD simulation results and obtain a good consistency between them. This model is fitted to other metal-oxide-semiconductor high electron mobility transistor devices also with modifications in related physical values.
EN
The article presents the results of modelling and simulation of normally-off AlGaN/GaN MOS-HEMT transistors. The effect of the resistivity of the GaN:C layer, the channel mobility and the use of high-κ dielectrics on the electrical characteristics of the transistor has been examined. It has been shown that a low leakage current of less than 10⁻⁶ A/mm can be achieved for the acceptor dopant concentration at the level of 5×10¹⁵cm⁻³. The limitation of the maximum on-state current due to the low carrier channel mobility has been shown. It has also been demonstrated that the use of HfO₂, instead of SiO₂, as a gate dielectric increases on-state current above 0.7A/mm and reduces the negative influence of the charge accumulated in the dielectric layer.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.