MOF materials (metal-organic frameworks) are a relatively organic-inorganic (hybrid) materials. Due to very good adsorption properties, large specific surfaces and large pore volumes, these compounds are quite intensively studied, and the number of organic-inorganic hybrids obtained is growing year by year. Most MOF compounds are crystalline two- or three-dimensional organometallic structures. They are an example of hybrid materials that are made of both inorganic and organic component. The inorganic part is represented by metal ions/clusters, while the organic skeleton contains neutral or charged organic linkers [1-3]. The most common metal cations included in organometallic lattices are: Zn2+, Cu2+, Cr3+, Al3+ and Mg 2+. Organic ligands can be neutral, positively or negatively charged, but they must be primarily electron pair donors, which means that they have nitrogen or oxygen-containing functional groups in their structure. Ligands’ role is to stitch these building units together to create extended framework structures, while metal ions provide structural integrity and durability. These materials have a well-developed specific surface and a large pore volume (570-3800 m2/g). Thanks to the presence of coordination bonds in the structure, the skeletons of organometallic networks are flexible. Based on literature data, several methods of cancer treatment using MOFs are distinguished, e.g.: using passive targeting, active targeting, physicochemical targeting, and in a particular case using all three strategies (Fig. 2, Table 1) [12,13]. The ongoing work on the modification of the synthesized MOF structures based on zinc ions allows the preparing various types of cancer drugs based on their durability and high porosity. The ability to synthesize multifunctional Zn-MOFs is a new chapter in the design of chemotherapeutic agents. A particular example is ZIF-8. The combination of different strategies for the influence of the pH value of the environment or photochemical elements gives the opportunity to use the compounds in imaging and cancer diagnosis.
Transport policy has always presented many dilemmas. Currently, its pro-ecological aspect, relating to the need to limit the negative impact of transport on the natural environment, causes the need to reconsider many issues related to the sustainable development of transport. The new approach should optimize activities in the areas of respect for the environment, technical progress and economic growth. According to the European Commission, this concept is gaining fuller understanding at the level of political discourse and, at the same time, becoming a horizontal principle – the foundation of EU transport policy. However, this requires the responsible creation of transport policy and its consistent and effective implementation. Therefore, it has become the subject of consideration at the Olsztyn Functional Urban Area level. The study aims to identify documents declared as transport policies or strategies and evaluate them in the context of formal authorization, content, coherence and applicability in the Olsztyn MOF.
In 1964, J.C. Bailat Jr. was one of the first scientists who use coordination polymers in his research. He established the rules of structure and the composition of compounds containing metal ions and organic ligands connected by coordination bonds to form layered or chain structures. He compared inorganic compounds belonging to polymeric species with organic polymers. The term Metal Organic Frameworks (MOF) was first used in the publication by О. M. Yaghia. Crystalline, microporous structures contain rigid organic ligands (used interchangeably: organic building blocks) that bind metal ions. This is called reticular synthesis. MOF surface area values usually range from 1000 to 10000 m2/g-1, thus exceeding the area values of traditional porous materials such as zeolites and carbons. Metal Organic Frameworks create porous three-dimensional structures, unlike coordination polymers. Inorganic minerals from the aluminosilicate group are used in the widespread heterogeneous catalysis and processes such as: adsorption and ion exchange, while compared to Metal Organic Frameworks, shows a lower potential than zeolites, moreover, the design of structures is less precise and rational due to the lack of shape, size and control functionalization of pores. To date, MOF are the most diverse and most numerous class of porous materials. All aspects have made them ideal structures for storing fuels such as hydrogen and methane. They are perfect for catalytic reactions and are good materials for capturing pollutants, e.g. CO2. The number of publications on coordination polymers (CP), Metal Organic Frameworks (MOF) or a group of hybrid compounds (organic-inorganic) increased tenfold at the turn of 2005, which proves the growing interest in this field by scientists around the world. MOF diversity in terms of structure, size, geometry, functionality and flexibility of MOF has led to the study of over 20,000 different MOF’s over the past decade. The search for new materials consists of combining molecular building blocks with the desired physicochemical properties. To produce a solid, porous material that can be used in the construction of a "molecular scaffold", rigid organic moieties, which are described in the literature as rods, must be combined with multi-core, inelastic inorganic clusters that act as joints (also called SBU secondary building units). By design, multi-core cluster nodes are able to impart thermodynamic stability through strong covalent bonds and mechanical stability due to coordination bonds that can stabilize the position of metals in the molecule. This property contrasts with those of the unstable single coordination polymers. The size and most importantly the chemical environment of the resulting voids are determined by the length and functions of the organic unit. Therefore, adjusting the appropriate properties of the material is made by appropriate selection of the starting materials. The isoretical method made it possible to use MOF structures with large pores (98 Á and low densities (0.13 g/cm3). This method involves changing the size and nature of Metal Organic Frameworks without changing the topology of their substrate. Thanks to this, it was possible to include large molecules such as vitamins (e.g. B12) or proteins (e.g. green fluorescence protein) into their structure and use the pores as reaction vessels. The thermal and chemical stability of many MOFs has made them amenable to functionalization by post-synthetic covalent organic complexes with metals. These properties make it possible to significantly improve gas storage in MOF structures and have led to their extensive research into the catalysis of organic reactions, activation of small molecules such as hydrogen, methane and water, gas separation, biomedical imaging and conductivity. Currently, methods of producing nanocrystals and MOF super crystals for their incorporation into specialized devices are being developed. Crystalline structures of MOF’s are formed by creating strong bonds between inorganic and organic units. Careful selection of MOF components produces crystals of giant porosity, high thermal and chemical stability. These features allow the interior of the MOF to be chemically altered to separate and store gases. The uniqueness of MOF materials is that they are the only solids to modify and increase the particle size without changing the substrate topology.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule zaprezentowano wybrane zastosowania materiałów pochodzenia naturalnego oraz antropogenicznego w kilku gałęziach biotechnologii. Wśród materiałów naturalnych uwzględniono zeolity pochodzące z węgla kamiennego, węgiel brunatny, kalcyt, kwarc, piryt, hydroksyapatyt i żel krzemionkowy. Wśród materiałów syntetycznych opisano zastosowanie w biotechnologii struktur metaloorganicznych MOF, węgla aktywnego i nanorurek węglowych. Przykłady zastosowań wzbogacono o wyniki analiz strukturalnych tych materiałów, które przeprowadzono w ramach prac badawczych Instytutu Mechaniki Górotworu PAN.
EN
The article presents selected applications of materials of natural and anthropogenic origin in several branches of biotechnology. Natural materials include zeolites derived from hard coal, lignite, calcite, quartz, pyrite, hydroxyapatite and silica gel. Synthetic materials include the use of metal–organic framework MOF, active carbon and carbon nanotubes in the biotechnology. Examples of applications were enriched with the results of structural analyzes of these materials, which were carried out as part of the research work of the Strata Mechanics Research Institute of the Polish Academy of Sciences.
The first research on Coordination Polymers began at the beginning of the 20th century. Wider understanding of their structure has enabled the development of crystallography. Since then compounds, which belong to this group, have been the subject of broad-spectrum scientific research. A particular class of these compounds, known relatively recently, are Metal–Organic Frameworks (MOF). The MOF structure is based on negatively charged organic linkers, e.g. polycarboxylic anions connected to various metal cations or metal clusters. MOFs are mainly built up from metal cations: transition, alkaline earth, main groups of the periodic table, as well as rare earth metals. Moreover, organic ligands used in the construction of MOF materials should contain electron donors. A characteristic bond, that allows the formation of hybrids, through the interactions of nodes and bridges is the coordination bond. It allows to synthesize a three-dimensional framework structure. Modern synthesis leads to the generation of porous materials with a very large surface area of pores and unique properties. Considering their synthesis, crystalline structures and physicochemical properties of MOF, as well as broad MOFs applications including gas storage, separation, catalysts, luminescence, magnetism and others, it is reasonable to state that MOFs can be used in many areas, not only in science, but also in environmental protection and in industry, for example, energy industry, chemical and biochemical industry.
MOF materials or metal-organic frameworks are compounds consisting of metal ions or clusters (metal junctions) and organic ligands (bridging groups) connected via coordination bonds. Since a variety of organic ligands and metal junctions is available, metal-organic frameworks of desired composition and structures can be synthesized. These compounds are relatively new, intensively studied, their number is continuously growing from year to year. Metalorganic frameworks may also possess elastic properties due to the presence of coordination bonds in their structure. A distinct feature of MOF materials, which differentiates them from other sorbents, is the possibility of changing their pore structure under influence of external stimuli and the ability of adjusting their pore size to the dimensions of the adsorbed molecules. An interesting phenomenon observed in these materials is the so-called “breathing” effect that is manifested by drastic changes in the pore volume upon external stimuli such as temperature, pressure, type of adsorbate, presence of solvent. There are numerous methods for the preparation of MOF materials: solvothermal, electrochemical, mechanochemical, sonochemical and microwave-assisted syntheses. An additional activation of these materials is often required to remove the remaining solvents from pores and consequently, increase their adsorption capacity. The latter can be also increased by additional modifications that can be used to tune their physicochemical properties, and especially porosity. Due to the excellent adsorption properties of MOF, especially very high BET specific surface area (up to 6200 m2/g) and large pore volume, these materials have been intensively studied for capture or storage of various gases such as CO2, H2 and CH4. Applications of metal-organic frameworks are continuously growing and range from gas storage, chemical sensors and phosphors to medicine, where they are used as drug carriers.
8
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Międzynarodowa Olimpiada Fizyczna (MOF) to konkurs w zakresie rozwiązywania zadań z fizyki przeznaczony dla wybitnych uczniów szkół średnich. Po raz pierwszy odbyła się w Warszawie, w lecie 1967 roku, tak więc w tym roku obchodzimy pięćdziesiątą rocznicę jej powstania [1,2].
The paper presents a brief review of the literature in the field of composites made of carbon materials and MOF structures. It focuses on presenting numerous examples of composites and the positive effects of the merger of these groups of materials. The new class of composites combines carbon materials with the functionality of inorganic materials. These composites offer a chance to eliminate weaknesses and enhance the capacity of each group. These composites proved that integrating MOF materials with carbonaceous materials can not only convert a significant weakness of MOF, but also surprisingly bring many new features such as improved resistance, i.e. for moisture, and electrical conductivity. These composites broaden the horizons of applications in the fields of adsorption, separation, catalysis, electrochemistry and sensors. In the future, using a variety of MOF structures and carbonaceous materials, newly formed composites will probably push the boundaries of cognition in many fields.
PL
Praca przedstawia krótki przegląd literaturowy z zakresu kompozytów złożonych z materiałów węglowych oraz materiałów metalo-organicznych (ang. metal-organic frameworks, MOF). Skupia się na zaprezentowaniu licznych przykładów tworzenia kompozytów z powyższych grup materiałów oraz ukazaniu pozytywnych efektów takiego postępowania. Nowa klasa kompozytów łączy cechy materiałów węglowych z funkcjonalnością materiałów nieorganicznych. Kompozyty te dają szansę na wyeliminowanie wad i lepsze wykorzystanie potencjału każdej z grup. Poprzez integrację materiałów MOF z materiałami węglowymi można nie tylko znacząco zminimalizować wady MOF, ale, co więcej, uzyskać wiele nowych funkcji, takich jak poprawa odporności, np. na wilgoć, czy przewodności elektrycznej. Dzięki tym kompozytom poszerzają się horyzonty aplikacyjne w dziedzinach adsorpcji, separacji, katalizy, a także elektrochemii i sensorów. W przyszłości korzystając z różnorodności struktur MOF i materiałów węglowych, nowo powstałe kompozyty, podobnie jak MOF i materiały węglowe, być może pozwolą przesunąć granice poznawcze w wielu dziedzinach.
The paper is focused on the processes of software development of enterprise systems. It is related to the new concept of software development paradigm named Context-Driven Meta-Modeling Paradigm (CDMM-P) introduced by the author. The CDMM-P can be applied to define modeling or meta-modeling languages, to construct enterprise systems data layer. The CDMM-P concept is based on application open ontologies in the form composed of notions characteristic for software engineering and it constitutes the first implementation and the first application of open ontologies in software engineering domain. The paper presents the concept of a shift of existing OMG standardization approach. It explains why the CDMM-P graph representation and its API should be the subject of standardization in place of MOFbased close ontology structures.
Usługi informatyczne stanowią powiązane ze sobą komponenty, które współpracują, aby osiągnąć założony cel biznesowy organizacji. standardy zarządzania usługami informatycznymi to zbiory dobrych praktyk służących podnoszeniu jakości usług informatycznych. stanowią one istotny element przekształcania potrzeb i wymagań biznesowych organizacji na konkretne usługi informatyczne.
EN
IT services are interlinked components that work together to achieve this objective of the organization. IT Service Management Standards are a set of best practices for improving the quality of IT services. Standards are an important element of transforming the needs and business requirements for IT services.
12
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Dokonano przeglądu terminologii i nomenklatury stosowanej w międzynarodowych i polskich doniesieniach naukowych w odniesieniu do jednej z najszybciej rozwijających się grup materiałów, jaką są sieci metalo-organiczne MOF. Przedyskutowano, czy właściwe jest użycie niektórych nazw, wskazując jednocześnie na pilną potrzebę wprowadzenia rekomendacji w terminologii i nazewnictwie dla tej grupy materiałów, zwłaszcza w języku polskim. Przedstawiono też propozycje autorskie.
EN
A review, with 53 refs. Some terminol. recommendations for the Polish language were given.
Currently, the metal-organic frameworks (MOF s) are considered among the most promising materials for hydrogen storage. In this paper, the properties of MOF s that are particularly important for application purposes are presented. Examples include simplicity of their syntheses on an industrial scale, low synthesis costs, high thermal stability and durability, an excellent repeatability and very low degree of degradation during cyclic hydrogen loading and recovery. On the other hand, the potential use of MOF s as hydrogen reservoirs is to some extent limited due to the fact that the low temperatures of 77 K are required for effective adsorption of hydrogen in the microporous structures of MOF s. Nowadays, the research on MOF s is carried in two directions. In particular, there are intensive studies on increasing of the concentration of hydrogen adsorbed at low temperatures in order to determine the limiting value for which maintaining the reservoir at the temperature of liquid hydrogen would be economically viable. It seems that the limiting concentration is being currently reached. The second direction of research is to increase the limiting value of temperature at which the concentration of adsorbed hydrogen is acceptable.
Połączenie unikalnych właściwości włókien mikrostrukturalnych z czujnikowymi możliwościami światłowodowych siatek Bragga daje bardzo obiecujące i ciekawe perspektywy na aplikacyjne wykorzystanie tego typu struktur w metrologii. Dzięki odpowiedniemu zaprojektowaniu geometrii włókna mikrostrukturalnego możliwe jest uzyskanie czujnika o bardzo wysokiej czułości na naprężenia (w szczególności dla modów wyższych rzędów), przy jednoczesnej pomijalnie małej czułości na temperaturę, a zatem niewymagającego dodatkowych mechanizmów kompensacji temperatury. W tej pracy przedstawiamy wyniki teoretycznej charakteryzacji kilkumodowego dwójłomnego włókna mikrostrukturalnego dedykowanego do zapisu siatek Bragga. Prezentujemy również charakterystyki spektralne siatek Bragga zapisanych laserem femtosekundowym na tym włóknie oraz porównanie eksperymentalnie wyznaczonych wartości efektywnego współczynnika załamania dwóch pierwszych modów z wynikami symulacji numerycznej. We wnioskach przedstawiamy wstępne wyniki pomiaru czułości polarymetrycznej na naprężenia oraz możliwe zastosowania aplikacyjne opracowanej przez nas technologii i wykonanych struktur.
EN
The possibility of manufacturing highly birefringent (HB) microstructured optical fibers (MOF) made these fiber types very attractive for use in sensing applications. In contrary to traditional optical fibre sensors, properly designed MOF based components do not need temperature compensation as their birefringence remains insensitive to temperature changes. Furthermore the polarimetric strain sensitivity can significantly increase (even two orders of magnitude according to our previously reported results) for higher order modes, as their mode maxima get closer to the holey region of the fiber, hence are subjected to higher strain distribution. In this paper we present the results of numerical modeling of the propagation conditions in the HB dual-mode MOF. Furthermore we show and discuss the spectral characteristics of fiber Bragg grating (FBG) structures written in the dedicated fiber with a femtosecond UV laser. A comparison of the theoretical and experimental values of effective refractive index of the fundamental and second order modes is also included. We show the preliminary results of the fabricated structures strain response measurements and discuss ideas of increasing the structures strain sensitivity.
Właściwości włókien mikrostrukutralnych takie jak: jednomodowe prowadzenie światła w szerokim zakresie spektralnym (od ultrafioletu do podczerwieni), bardzo wysoka dwójłomność, bardzo duże lub bardzo małe pole modu są przedmiotem badań wielu zespołów naukowych na świecie. Właściwości te wynikają przede wszystkim z rozmiaru, kształtu oraz lokalizacji otworów powietrznych w strukturze włókna mikrostrukturalnego. Zmiana tych parametrów pozwala na zastosowania takich włókien do różnych aplikacji. Sprawia to rosnące zainteresowanie włóknami mikrostrukturalnymi które widoczne jest w powstających czujnikach opartych na ich bazie - m. in. Czujniki interferometryczne do detekcji rozmaitych parametrów fizycznych. Jednym z takich czujników jest światłowodowy interferometr Macha-Zehndera wykorzystujący jako gałąź czujnikową włókno mikrostrukturalne. Interferometr ten jest jednym z układów który nie został opisany w fachowej literaturze. Czujnik zbudowany w oparciu o taki interferometr może być użyty do pomiarów wibracji, dynamicznego lub statycznego nacisku, rozciągania lub skręcania. W pracy tej przedstawione zostało porównanie czułości temperaturowej oraz mechanicznej włókien mikrostrukturalnych ze standardowymi włóknami jednomodowymi. Do tego celu wykorzystaliśmy interferometr Macha- Zehndera z wymiennym ramieniem czujnikowym. Zastosowanie takiego rozwiązania pozwoliło na zbadanie wielu światłowodów w jednym układzie pomiarowym. Czułość temperaturowa jest najistotniejszym czynnikiem przy projektowaniu czujników. Włókna mikrostrukturalne zbudowane są z czystego szkła krzemiankowego z heksagonalną macierzą otworów powietrznych co powoduje brak naprężeń termicznych pomiędzy płaszczem a rdzeniem jak w przypadku włókien z domieszkowanym rdzeniem.
EN
Microstructured fibres (MSFs) reveal unique properties including endlessly single-mode operation from ultraviolet to infrared wavelengths, very high birefringence or nonlinearity, very large or very small effective mode field area, and many others. The size, shape and the location of the air holes allow for tailoring MSF parameters in a very wide range, way beyond the classical fibres, what opens up the possibilities for various applications. Due to their advantages MSFs obtain growing attention for their perspectives in sensing applications. Different MSF sensors have already been investigated, including interferometrie transducers for diverse physical parameters. Until now, there have not been any publications reporting on the sensing applications of MSF Mach-Zehnder interferometers, targeting the mechanical measurements of vibrations, dynamic or static pressure, strain, bending and lateral force. Moreover, a critical feature opening the prospective of optical fibre transducer to successfully accomplish a particular sensing task remains its cross-sensitivity to temperature. Studied MSF is made of pure silica glass in the entire cross-section with a hexagonal structure of the holes. Consequently, there is no thermal stress induced by the difference in thermal expansion coefficients between the doped core region and the pure silica glass cladding, in contrast to standard fibres.
The metal organic frameworks (MOFs) are a novel group of molecular sieves discovered in the last decade of the twentieth century. Most of conventional molecular sieves such as microporous zeolites and zeolite-like materials, ordered mesoporous materials (M41S) are typical inorganic compounds. Although their synthesis often involves an assistance of organic compounds acting as structure directing agents and organic solvents are sometimes applied during their crystallization, the organics are always removed from resulted products (mainly by calcinations). The MOFs are crystalline materials build of metal ions or ion clusters coordinatively bonded with organic segments (linkers) that form porous (one-, two-, or threedimensional) structures. The various coordination number of selected metal and the nature of organic linkers allow to prepare a great variety of structures with different properties. The inorganic components comprise a great variety of transition (e.g. Zn Cu, Fe, rare earths) and base metal (e.g. Al) cations of different valence. The organic linkers are functionalized compounds containing O, N, P, S atoms (i.e. carboxylates, phosphonates, sulfonates, cyanides, amines, imidazoles) enable to chelate the inorganic cations. The organic subunits can be additionally modified by substitution of other functional groups (halogens, hydroxyls, aminogroups). The MOF materials are mostly prepared similarly as zeolitic materials by crystallization in solvothermal conditions. The solvents (water or organic compounds) can play a role of templates, although sometimes additional structure directing agents are admitted into the initial mixtures. The crystallization is always conducted in moderate temperatures (20–200°C). After removal of solvents well ordered pore systems are available for selective adsorption and for other applications. The thermal stability of this family of molecular sieves is obviously lower than that of inorganic materials, but most of them can withstand heating at 350–400°C, which still makes them suitable for variety of potential applications. The adsorption properties of MOFs makes them very appealing for practical application. The recorded surface areas of some types are overwhelming and they surpass 5000 m2/g. The high adsorption capacity is very promising for storage of fuels (natural gas, hydrogen) or waste gases (CO2, SO2) as well as for their separation. The great and very fast growing variety of structures and chemical compositions brings also a hope to use them as efficient catalysts. The metal segments, functional groups in organic blocks as well as occluded or encapsulated species can play a role of catalytically active sites. The MOF materials can be also applied as matrices for sensors, pigments, and microelectronic or optical devices.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.